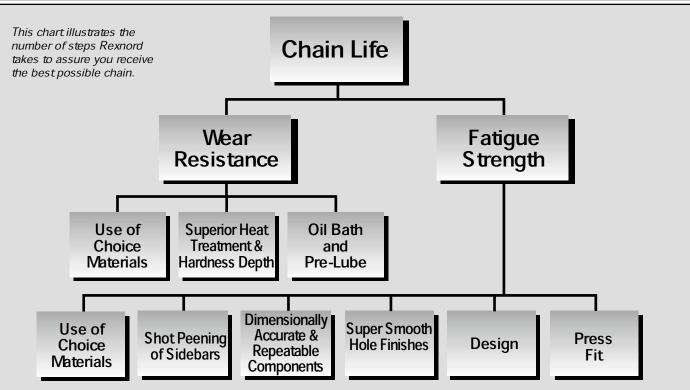
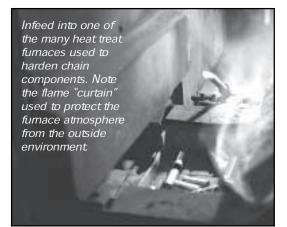

Rexnord & Link-Belt Conveyor,
Elevator, & Drive ChainsPerformance, Value, & Reliability
(English-Inch)



Special Application Chain	4-9
Engineered Steel Chains with Rollers	
Engineered Steel Chains without Rollers	
Engineered Steel Chain Attachments	15-29
Drive Chains	
Welded Steel Chains	
Welded Steel Chains Attachments	
Cast Chains	
Cast Chain Attachments	49, 51, 56-58
Drop Forged Chains	59
Drop Forged Chains Attachments	
Polymeric Chains	
Live Roller Conveyor Chain	
Double Flex Chain	
Low Friction – LF Bushed Chain	
Platinum Series TM Corrosion-Resistant Chains	
Rex® and Link-Belt® Chain Interchange	
Sprockets	
Buckets	
Design and Selection	103-132
Maintenance Information	
Engineering Data	139-147
Chain and Sprocket Index	148-150
Subject Index	

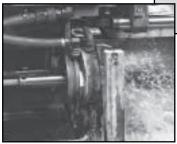
INTRODUCTION



CHAIN LIFE – THE CRITICAL CRITERION IN SELECTING YOUR CHAIN SUPPLIER

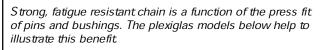
Chain repair and replacements add up to expensive delays and unforeseen material and labor expenses. Factors that can weigh heavily on your operation's profitability.

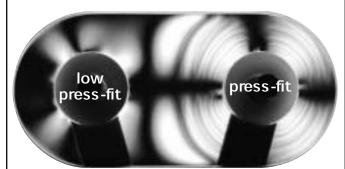
In order to meet tight schedules and keep overhead down, you need to select chain that will perform and last – even under the most rigorous conditions.

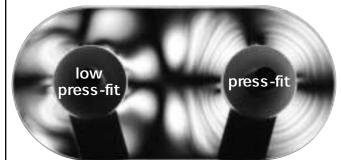

Rexnord Corporation, manufacturer of Rex[®] and Link-Belt[®] chain for over 100 years, is the leader in the engineered chain industry. Our many years of experience provide unique expertise in material selection, heat treatment and design engineering – key factors that add up to superior chain strength and extended wear life.

What to look for when specifying chain:

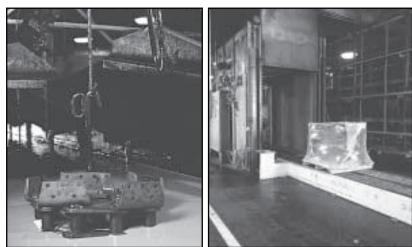
- Wear Resistance chain life is directly affected by the hardness of the wearing components. Quite simply, the harder the parts, the longer the wear life. Rexnord's heat treatment capabilities exceed that of other chain manufacturers. Combine this with the use of choice materials, and it adds up to superior chain that eliminates costly and unexpected downtime.
- Fatigue Strength a key factor leading to the durability of our chains is superior fatigue strength. Tightly controlled interference fits between the pins and chain sidebars, proper welding and stress relieving, heat treatment and regular testing, and application experience make our chains the number one choice for your particular application.


Cross-sections of heat treated chain components. The silver surfaces are the result of acid etching and illustrate the deep case depths our chain components have.



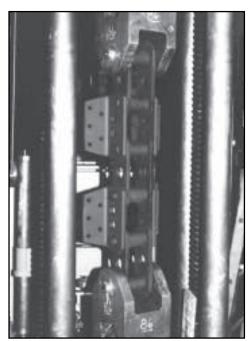

Custom built induction coils and ancillary equipment have been designed by Rexnord expressly for induction heat treating chain components and sprockets.

■ INTRODUCTION



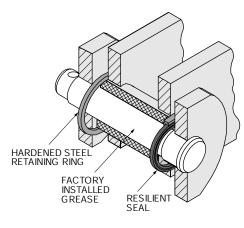
In an unloaded state, a pin or bushing with a significant press fit will exert compressive stresses around the chain sidebar hole. Low or non-press fit components exert little to none. This photo shows the stress present around a press fit bushing and the lack of compressive stresses around the non- or low-press fit bushings.

Under load, the stress changes drastically around the low press fit hole but very little around the highly press fit hole. Large stress changes reduce the fatigue resistance of chains. For this reason, Rex and Link-Belt chains use an optimum amount of interference to provide that protective compressive stress!

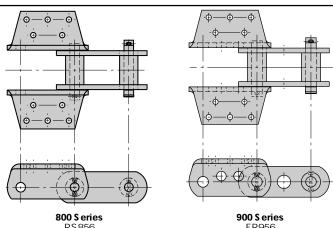

Pre-lubrication and shrink wrapping: Rexnord takes extra steps at the end of manufacturing to protect your chain. All chain is pre-lubricated and shrink wrapped. This means less corrosion and less break-in wear. Better for long-term storage too.

Fully machined pins offer dimensional accuracy critical in the manufacture of reliable, strong chain.

Rexnord has invested heavily in CNC controlled machinery for better lot-to-lot component uniformity.


This photo depicts a fatigue testing machine used by Rexnord to evaluate chain fatigue strengths and guide us in making improvements.

HIGH PERFORMANCE ELEVATOR CHAINS

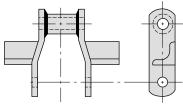

Rex® heavy duty elevator chains have garnered a reputation as the longest lasting, most reliable chains available today for tough elevating applications. Clinker, finished cement, fertilizer, coal, you name it, and it can be elevated most efficiently and reliably with our chains.

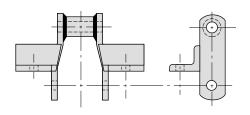
The 900 series chains are the newest addition to this line of chain. With larger components, the 900 series offers 30% greater fatigue strength over their 800 series counterparts. Lightening holes were added to the 900 series to offset the increase weight introduced by larger bushings and pins.

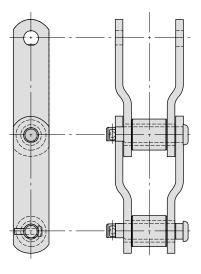
No matter which series you choose, you're guaranteed the highest level of heat treatment and manufacturing available in elevator chains today.

Sealed Joint **Elevator Chains** Factory installed arease sealed in, abrasives or corrosives sealed out An option in these chains and denoted by the "SJM" prefix.

RS856 ER857 ER859 ER864




Linkmaster[®]


Keep the advantage of high press fits by using the Linkmaster assembly and disassembly tool. See page 138 for more details.

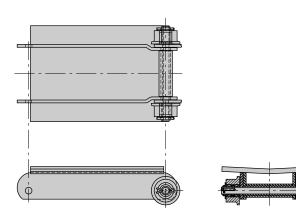
GRAIN HANDLING CHAINS

Rexnord manufactures a wide variety of chains for the grain industry. Welded steel chains are very popular due to the fact that they are easily modified by welding on a variety of attachments. Press fit engineered steel chains with rollers are used in longer, higher load systems. The chains shown are examples of these two chain types.

REX AND LINK-BELT ENGINEERED CHAIN APPLICATION FOR AMUSEMENT RIDES, RECREATIONAL LIFTS, AND OTHER PEOPLE MOVERS

From time to time, chain application questions concerning driving or conveying functions on amusement rides and recreational lifts are brought to Rexnord's attention. Concern arises for the safety and the well being of people utilizing these units should chains prematurely or unexpectedly fail. A general review has been made to establish certain rules and recommendations for the selection and application of these rides and conveyances. The following reflects those conclusions:

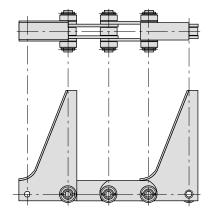
- 1. Chain should not be used for any amusement ride or recreational lift application unless there are adequate, functional, and operational safety backup devices to prevent hazardous or unsafe conditions from occurring.
- Chains containing castings or molded parts of any material should not be applied to these applications. This includes pintle, heavy pintle, combination, cast steel, nonmetallic, and similar chains.
- 3. Chains containing weldments of any nature should not be applied to these applications. This includes welded steel versions of basic cast pintle chains and engineered steel chains containing welded components.
- 4. Chain selections of any nature should not be made or changed without written approval of the appropriate representatives of an approved original equipment manufacturers of that equipment. This includes replacement chains from any manufacturer including Rexnord. Written approval is required for each purpose.

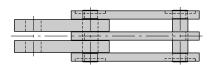

- 5. Chain selections for amusement rides or recreational lift applications should be of the engineered steel types of chain generally covered by ANSI standards B29.10, B29.12, and B29.15 after review of all application factors by and approval of the appropriate responsible representative of the original equipment manufacturer of the equipment.
- 6. Chains on these applications should be adequately lubricated and properly maintained at all times.
- 7. Chain reliability is based upon a good press fit of the pins and bushings into the sidebars. Therefore, do not grind the chain pins, bushings, or holes in the sidebars in order to assemble the chain as supplied from the factory.
- 8. Alteration of chain destroys the integrity of the press fits of the chain assembly. Therefore, do not alter or rebuild any chains for these applications.
- 9. If a customer applies an engineered chain product without our approval, it is a misapplication and, as such, is not warrantied under our standard conditions of sale.

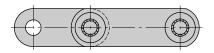
Should questions arise covering any of these policies or procedures, please contact your local Rexnord sales office.

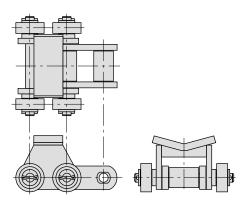
IN-FLOOR CONVEYING CHAIN

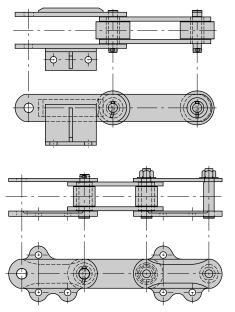

Rex[®] and Link-Belt[®] In-Floor Conveyor Chains are specially designed to move continuous loads, such as those found in the paper, steel and automotive industries. Rexnord manufactures a variety of configurations to accommodate a multitude of applications.


A complete selection of materials, top plates and pitch lengths are also offered.

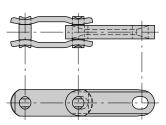


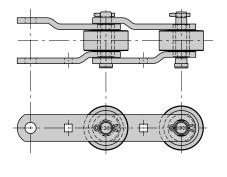

DRAWBENCH AND STEEL INDUSTRY CHAINS

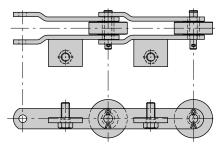

Hot steel slabs, coiled steel and metal tubing all move smoothly on our chains. Rollers, if needed, are fully machined and supplied with bearings. The large laced chains shown to the right are for draw benches used in the tube industry. These chains are fully machined on Rexnord's modern CNC milling machines.



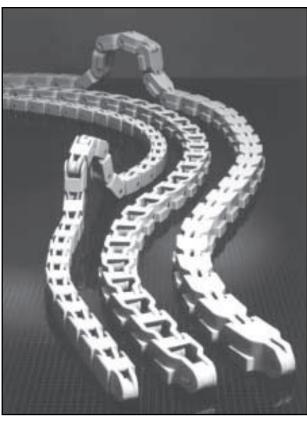
RECLAIMER AND BARGE/SHIP UNLOADING CHAINS

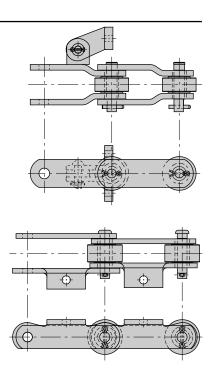

Many types of reclaimers and barge/ship unloaders use large engineered class chains. Rexnord can design new chains for these applications, or build replacement chains if given a sample. Below are some examples of chains we have made, but the styles we can make are virtually limitless.




BOTTLING AND BEVERAGE INDUSTRY

Some of the most commonly used engineered chains in the bottling industry are bottle washer chains. Rexnord makes a wide variety of these chains that meet or exceed OEM specifications. Chains and attachments can be modified to help solve maintenance problems. Below are some examples of chains we make.

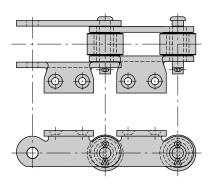

Side-flexing chains are also very common in bottling. Rexnord has one of the broadest lines of rugged polymeric and steel side-flexing chains for barrel, case and pallet conveying.

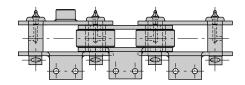


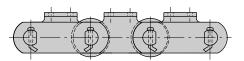
SPECIAL APPLICATION CHAIN CANE SUGAR AND SUGAR BEET PROCESSING

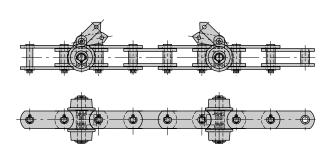
Bagasse, intermediate, feed tables and main cane carrier chains are all available from Rexnord. Many sugar processing chains are the same as they were years ago when mills were smaller. Today's larger mills require newer, stronger chains such as the Rex[®] F9184 – a larger version of the F2184. Contact Rexnord for a copy of the latest Sugar Mill Chains brochure.

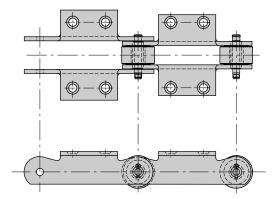
Many chain styles are available for sugar beet processing as well. As in cane sugar processing, this industry is very corrosive. Sealed Joint chains are available for sugar beet elevators to fend off pin and bushing corrosion. Special materials and platings are also available.

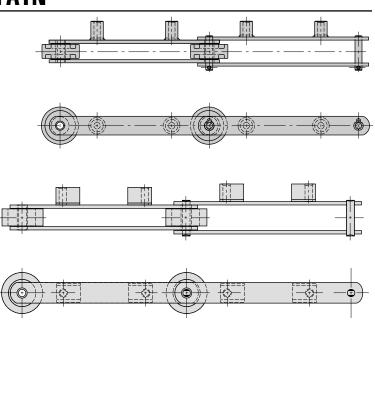


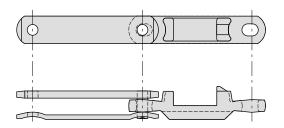

FOOD PROCESSING


Engineered chain is used throughout the food processing industry. Some typical applications include hydrostatic cookers, overhead carcass conveyors, cutting tables and vegetable process conveyors. Examples of some of the metallic chain configurations used in this industry are shown below.


Rexnord offers a wide variety of material and/or coating options to combat the corrosive elements generally found in these applications. See pages 72-73 for examples of solutions that would apply to metallic chains. See pages 64-68 for polymeric chains and accessories.

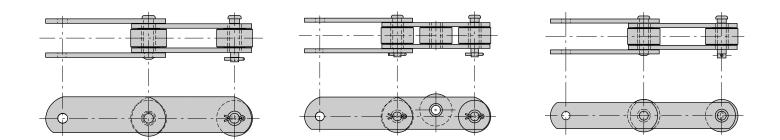

Chains for the baking industry (oven, proofer, etc.) are also available. Contact Rexnord for details.

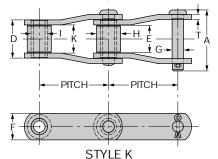


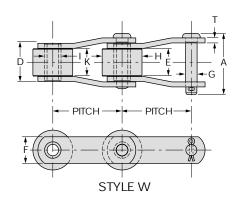


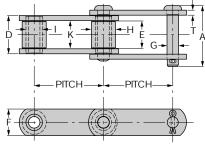
DISTRIBUTION AND MATERIAL HANDLING

Today's large postal and consumer goods distribution centers rely heavily upon engineered chains to sort and move product. Sortation chains are the most common and Rexnord has developed many different styles to suit particular needs. Sorter cart mounting bosses can be modified in a number of ways to increase strength and performance. Chain rollers are available in molded thermoplastics or in super rugged urethane lagged steel – your choice.

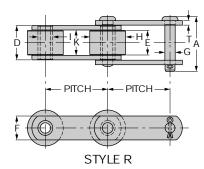

In-floor tow chains for automated cart conveyors are also made by Rexnord. Call for details.


HIGH SIDEBAR AND GENERAL CONVEYING CONVEYOR CHAIN


Rex and Link-Belt[®] High Sidebar Conveyor Chains offer superior strength for conveying heavy loads, such as those found in the automotive, steel and general assembly industries. It rolls comfortably on any even, firm surface to provide efficient, economical conveying. Versions with intermediate rollers are available for accumulation conveyors.



■ ENGINEERED STEEL - With Rollers


F or an explanation of rated working load, and for application guidance, refer to D esign and S election or call R exnord.

Properties TH CARB CIH SIH WI	Thru Hardened Carburized Circumferentially Induction Hardened Selectively Induction Hardened White Iron
--	---

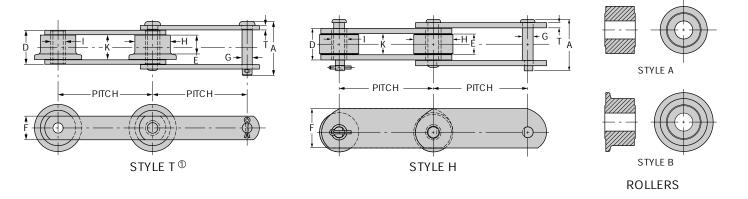
	Link-			Datad	Rec.	Minimum	Augracia	Over-All	Between	Sideb	ars		Pins		Ro	ollers		Bus	hings	
Rex		Style	Average	Rated Working	Maximum	Ulumate	Average Weight	Pin & Cotter		Thickness	Height	Diam.			Outside			Lenath	Outside	Sprocket Unit
Chain No.	Chain No.	pujie	Pitch	Load	R.P.M for	Strength,	Per Foot						Properties	Width		Style	Properties	- J.	Diam.	No. ²
	0.10.1110			Loud	12T. Spkt.0	Lbs. x10 ³	0.1000	Α	K	Т	F	G		E	Н			D	I	
								1.654	-2 609-1	nch Pitch	า									
RR 362	RS625	Ν	1.654	1,650	280	8	3.0	2.03	1.00	.13	1.13	.38	CARB	.97	.88	Α	TH	1.25	.56	62
RR 432	RS627	N		2,100	280	21	3.7	2.28	1.00	.19	1.13	.44	TH	.97	.88	Α	TH	1.38	.63	62
81X	RS81X	Ν		2,000	145	16	25	214	1.07	.16	1.13		CARB	1.00	.88	Α	TH	1.39	.63	78
C1288	SS1088	N		2000	145	16	25	2.23	1.08	.16	1.13		CARB	1.03	.90	A	CARB	1.38	.63	78
1578	DC 0000	K	2.609		145	17	26	2.36	1.06	.19	1.00		CARB	1.03	.90	A	CARB	1.44	.63	78
RR778 RR588	RS886 RS887	N		2,300	145 145	13 17	29 3.8	2.41 2.67	1.13 1.13	.19 .25	1.13		CARB CARB	1.08	.88 .88	A	TH	1.50 1.63	.63 .63	78 78
81XH	RS81XH	N		2,500	145	28	4.1	2.58	1.13	.25 .31®	1.13 1.27	.44 .43	TH	1.08 1.00	. oo . 88.	A	TH	1.63	.63	78
81XHH	RS81XHH	N	2.609		145	28	4.6	2.76	1.07	.31	1.27	.43	TH	1.00	.88	Â	TH	1.69	.63	78
270	SS2004	N		3,500	145	40	6.9	2.95	1.14	.31	1.63	.56	TH	1.09	1.13	A	TH	1.77	.81	270
7774		Ň		3,500	145	40	6.4	3.01	1.13	.31	1.63		TH	1.06		Â	TH	1.75	.81	270
							3	000-3	075-3.11	O-Inch P	itch									
	RS 303	N	3000	1.340	115	6	20	1.544	.50	.19	1.00	.44	CARB	.48	.88	A	CARB	.88	.63	303
SR183	RS 3013	R		2100	115	13	4.0	2.25	1.00	.19	1.13		CARB	.40	1.50	A	CARB	1.38	.63	183
A4539	100010	N		4,650	110	38	6.8	3.47	1.50	.10	1.50		SIH	1.45		Â	CARB	213	.88	4539
1539	RS1539	N		4,650	110	24	6.8	3.50	1.50	.31	1.50			1.45		A	TH	213	.89	1030
7539		Ν	3.110	4,650	110	40	9.1	3.47	1.50	.31	1.75	.63	SIH	1.40	1.38	Α	TH	213	1.00	7539
								4(000-Inch	Pitch										
RR1120	RS4013	R	4.000	2100	75	13	3.4	2.28	1.00	.19	1.13	.44	TH®	.90	1.50	Α	CARB [®]	1.38	.63	1120
	RS4113	R		2,300	75	13	4.2	2.32	1.13	.19	1.13		CARB	1.09		Α	CARB	1.50	.63	188
SR194	RS4216	R	4.000	2,350	75	15	5.3	2.47	1.19	.19	1.25	.44	CARB	1.09		Α	CARB	1.56	.63	194
SR188		R		2,400	75	13	4.2	2.47	1.19	.19	1.13		CARB	1.06		Α	CARB	1.56	.63	188
4	RS4019	R		2,500	75	21	4.2	2.50	.95	.25	1.25	.50	CARB	.97	1.50	A	CARB	1.46	.75	1120
2188	RS2188	R		4,200	75	23	7.0	3.25	1.31	.31	1.50	.63	CARB	1.25	-	A	CARB	1.94	.94	188
531 X3433	RS4328	R		4,500 5,300	75 75	28 41	9.7 9.0	3.47 4.30	1.31 213	.38 .38	1.50 1.50	.63 .63	CARB [®] SIH	1.25 2.06	2.25	A	CARB CARB	206	.94 1.00	531 3433
A2868		N		7,200	75	57	9.0	4.30	213	.30	1.75		SIH	2.00		A	CARB	2.00		2868
72000			4.000	7,200	75	57				0-inch P		.75	511	1.55	1.77		CARD	275	1.00	2000
2420	DC1112		4.040	4.000	70	22						<u> </u>		1 00	200	Δ		1 04	04	1110
3420	RS1113 RO2113	R	4.040	4,300	75 75	23 18	7.6 8.0	3.25 3.14	1.31 1.31	.31	1.50	.63 .69	CARB CARB	1.25 1.25		A	CARB CARB	1.94 1.94	.94 1.00	1113
	R02113 RS60	R		4,300	75	23	8.5	3.14	1.31	.31 .38	1.50 1.50			1.25		A	CARB	1.94	1.00	2113 RS60
C2848	K300	N		6,600	75	48	11.0	4.26	200	.38	2.00		-	1.25		A	TH	275		2848
2858		N		7.200	75	40 57	13.0	4.20	200	.30	2.25	.75		1.94		A	CARB	275	1.13	2858
3285		N		10,500	60	91	21.0	4.94	200	.50	2.50		SIH	1.94		A	TH	3.06	-	3285
	s are thru-h					-	21.0	1.0 T	200		2.00	.01		1.00	200			0.00	1.01	5205

Sidebars are thru-hardened; bushings are carburized. If driver has more *l*ess than 12 teeth, increase *l*ecrease RPMin direct ratio of number of teeth to 12 Do not exceed a chain speed of 450 FPM

⁽²⁾ Fabricated steel sprockets are recommended ³ Outer (pin link) sidebars are .21 inches thick.

⁽⁴⁾ Extended rivet.

⁽⁵⁾ Heat treatment and dimension specifications for Rex Chain; Consult factory for Link-Belt specifications.


Note: Dimensions are subject to change. Certified dimensions of ordered material are furnished upon request.

10

ENGINEERED STEEL

■ ENGINEERED STEEL - With Rollers

F or an explanation of rated working load, and for application guidance, refer to D esign and S election or call R exnord.

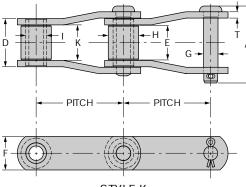
CARB Cart CIH Circ SIH Sele	-Hardened urized umferentially Induction Hardened ctively Induction Hardened æ Iron
-----------------------------------	---

Dimensions are in incl	nes, Strengths, loads a	nd weights are in pounds.
Dimensions are minu	103. 3 a crigars, 10aas a	na weigines are in pounds.

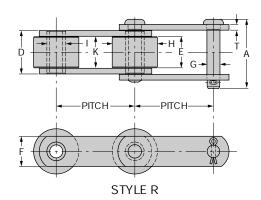
	Link-			Rated	Rec.	Minimum						Bus	hings	Sprocket						
Rex Chain No.		Style	Average Pitch	Working	Maximum R.P.M for	Ultimate Strength,	Weight Per Foot	Pin & Cotter	Sidebars	Thickness	Height	Diam.	Properties	Face Width	Outside Diam.	Style	Properties	Length	Outside Diam.	Unit No. [©]
				Luau	12T. Spkt.®	Lbs. x 10°		Α	К	Т	F	G	1	E	н			D	1	1
								6.	000-Inc	h Pitch										
SR196	RS6018	R	6.000	2,600	40	18	5.0	2.72	1.19	.25	1.50	.44	CARB	1.09	2.00	А	CARB	1.69	.63	196
1604		W	6.000	2,800	40	20	5.3	2.69	1.06	.25	1.25	.50	CARB	.88	3.00	Α	WI	1.56	.72	1604
2126	RS1116	R	6.000	3,400	40	21	5.0	2.89	1.25	.25	1.50	.56	CARB	1.19	2.00	А	CARB	1.75	.81	196
2190	RS2190	R	6.000	3,400	40	21	7.0	2.89	1.25	.25	1.50	.56	CARB	1.19	2.50	Α	CARB	1.75	.81	197
1670		R	6.000	4,100	40	23	6.3	3.25	1.31	.31	1.50	.63	CARB	1.19	2.25	А	CARB	1.94	.94	2180
	RS1114	R	6.000	4,200	40	23	6.3	3.25	1.31	.31	1.50	.63	CARB	1.25	2.00	Α	CARB	1.94	.94	196
2180		R	6.000	4,500	40	35	8.7	3.47	1.31	.38	1.75	.63	CARB	1.19	2.25	А	CARB	2.06	.94	2180
S951		R	6.000	4,500	40	37	10.7	3.47	1.31	.38	2.00	.63	CARB	1.19		А	CARB	2.06	.94	S 951
2183	RS951	R	6.000	4,600	40	24	10.7	3.50	1.50	.31	1.50	.63	CARB	1.38	3.00	А	CARB	2.13	.89	1131
F2183		Т	6.000	4,600	40	24	11.1	3.50	1.50	.31	1.50	.63	CARB	1.13	3.00	В	WI	2.13	.88	S 951
1036		Κ	6.000	4,600	40	24	4.8	3.50	1.50	.31	1.50	.63	CARB	1.45	-	А	TH	2.13	.88	1036
	RS658	TØ	6.000		40	18	9.6	3.32	1.50	.31	1.50	.63	CARB	1.13		В	WI	2.13	.89	1604
1617		R⊚	6.000	4,800	40	43	11.0	3.28	1.38	.31	2.50	.69	CARB	1.22	2.50	А	CARB	2.00	1.00	197
SR 31 30		W	6.000	5,200	40	45	10.0	3.53	1.25	.38	2.00	.75	CARB	.94	2.50	A	CARB	2.00	1.13	197
6	RS6238	R	6.000	5,600	40	45	11.0	3.67	1.38	.38	2.00	.75	TH®	1.31	2.50	Α	CARB	2.13	1.13	197
6 Sp.		R	6.000	5,600	40	45	12.2	3.66	1.38	.38	2.00	.75	TH	1.25	3.00	A	CARB	2.13	-	1131
	RS953	N	6.000	5,600	40	27	8.7	3.57	1.38	.38	2.00	.75	TH	1.31	1.75	A	CARB	2.13	1.13	953
DD542	RS6438	R	6.000		40	45	12.6	3.57	1.38	.38	2.00	.75	CIH	1.31	3.00	A	CARB	2.13	1.12	1131
RR542	DC044	N	6.000	6,000	40	28	5.7	4.05	2.13	.31	1.50	.63	CARB	2.06	-	A	TH	2.75	.89	110
BR2111 C2124	RS944+	N	6.000		40 40	67 63	9.6	3.84	1.56	.38	2.00	.88	TH	1.50		A	CARB	2.31 2.31	1.25	2111
A212435	RS996	R	6.000	6,000			11.8	3.84	1.56	.38		.75	TH	1.25	2.75	A	CARB		1.13	2124
	RS1131		6.000	6,000	40 40	63 45	11.8 12.5	3.84 3.84	1.56	.38 .38	2.00	.75	TH TH	1.44	2.75	A	CARB CARB	-	1.13 1.13	2124
FX2184		R W	6.000	6,000	40	43 58	12.3		1.56		2.00			1.38		A				1131
FX9184	K02104	W	6.000 6.000		40	100	15.2	3.76 4.41	1.38 1.56	.38 .50	2.00 2.50	.88 .94	CIH CIH	1.06 1.20		A	CARB CARB	2.13 2.53		1131 9184
A2178 ⁹			6.000	7,000	40	56	15.2	3.88	1.56	.38	2.50	.88	CIH	1.20		A	CARB	2.33	1.25	2124
A2178° A21989	RS960	R	6.000	7,650	40	64	18.2	4.43	1.56	.50	2.25	.88.	CIH	1.25	2.75	A	CARB	2.56	1.30	2124
	RS2047 ⁽⁴⁾		6.000		40	98	32.0	3.94	1.63	.38	2.20	.00	TH	1.57	3.00	A	CARB	2.38		2047
5208	N32041°		6.000		40	54	10.5	4.90	1.94	.50	2.00		СІН	1.88		A	TH	2.94	1.25	5208
	RS2600®	R	6.000		40	112	30.0	4.98	2.66	.38	3.00	1.00	TH	2.29		A	ТН	3.41	1.50	2600
C9856			6.000		40	82	22.1	5.96	3.00	.50	2.75				2.75	Â	CARB	4.00		9856

Sidebars are thru-hardened; bushings are carburized. ^① If driver has more *l*ess than 12 teeth, increase *k* decrease RPMin direct ratio of number of teeth to 12. Do not exceed a chain speed of 450 FPM ^② Fabricated steel sprockets are recommended.

^③ Plated pin.


⁽⁴⁾ Chain furnished with attachments every pitch.

⁽⁵⁾ Lower edge of sidebar is necked.


Cower edge of statebar is .25" higher than centerline of roller. Sidebar extends .25" above roller.
 When assembled with through rods, the roller flange is on the side opposite the end of the rod.
 Heat treatment and dimension specifications for Rex Chain; Consult factory for Link-Belt specifications.

ENGINEERED STEEL - With Rollers

F or an explanation of rated working load, and for application guidance, refer to D esign and S election or call R exnord.

STYLE K

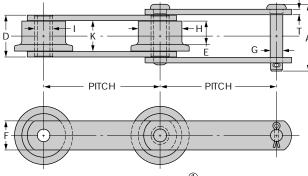
Properties	S
TH	Thru -Harder
CARB	Carburized
CIH	Circumferer
SIH	Selectively
WI	White Iron

ned ntially Induction Hardened Induction Hardened White Iron

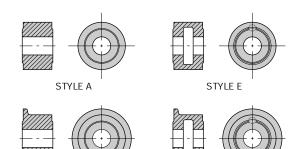
Dimensions are in inches. Strengths, loads and weights are in pounds.

	Link-			Rated	Rec.	Minimum	Average	Over-All	Between	Sideba	ars		Pins	I	Ro	llers		Bus	hings	Sprocket
Rex Chain No.		Style	Average Pitch	Working	R.P.M for	Strength,	Weight Per Foot	Pin & Cotter		Thickness	Height	Diam.	Properties			Style	Properties	Length	Outside Diam.	Unit No. ©
	onannio.			Loud	12T. Spkt	Lbs. x 10 ³	1 01 1 000	Α	К	T	F	G		E	н			D	I	
								8	000-Inc	h Pitch										
A2800		R	8.000	9,800	26	94	62.2	4.71	1.81	.50	2.75	1.00	C⊪	1.50	3.50	Α	CARB	2.81	1.50	2800
	RS2800 ³	R	8.000	11,900	26	112	30.0	4.98	2.66	.38	3.75	.94	TH	2.28	3.50	А	TH	3.41	1.50	2800
	RS28043			24,300	26	150	47.0	6.86	3.64	.50	3.50			3.20	4.25	А	TH	4.64	1.99	2804
	RS2806 ³	R	8.000	35,000	26	217	75.0	7.99	4.71	.50	4.25	1.75	TH	4.34	5.00	A	TH	5.71	2.25	2806
								9	000-Inc	h Pitch										
1039		Κ	9.000	4,650	22	24	4.3	3.50	1.50	.31	1.50	.63	CARB	1.45	1.25	Α	TH	2.13	.88	1039
ER911	RS911		9.000	4,650	22	33	8.5	3.45	2.006	.31	2.00	.63	CARB	1.44	3.00	Α	₩I©	2.13	.89	E911
	SS928	Т®	9.000		22	29	8.5	4.20	2.00	.38	2.00	.75	TH	1.69		А	NONE	2.75	1.13	SS 928
ER922	SS927		9.000		22	34	12.0	4.28	2.00	.38	2.00	.75	TH	1.94	3.50	А	WI	2.75		E922
FR922	SS922			7,200	22	34	12.5	4.28	2.00	.38	2.00	.75	TH	1.31	3.50	В	WI	2.75	1.13	F922
R2342				9,000	22	54	9.2	4.80	1.94	.50	2.00	.88	CIH	1.90		A	CARB	2.94		2342
R2405 ER933				9,000	22 22	88 53	9.7 15.6	4.80	1.94 2.25	.50 .38	2.13	.88 .88	TH	1.88 1.75		A	CARB WI	2.94	1.25	2342 E933
ER 933	SS942			9,200 9,200	22	39	12.4	4.72	2.25	.30	2.50	.00 .88	TH	1.75 2.19		A	NONE	3.00	1.25	E933 SS942
FR933	SS933			9,200	22	48	16.5	4.61	2.25	.38	2.50	.88	TH	1.56		B [®]	WI	3.00	1.25	F933
	RS 4851			9,200	22	67	14.7	4.60	2.25	.38	2.50	.88		2.13		A	TH	3.00	1.27	4009
	RS 4852			12,700	22	65	18.5	5.69	2.63	.50	2.50			2.56		A	CARB [®]	3.63		4004
	RS 4065			18,900	22	148	36.2	6.52	3.06	.63	3.50			3.00		A	CARB	4.31	2.00	4065
	RS2064			19,700	22	105	28.0	5.90	2.75	.50	3.50			2.69		A	TH	3.75		2064

Sidebars are thru-hardened; bushings are carburized. If driver has more less than 12 teeth, increase lecrease RPMin direct ratio of number of teeth to 12. Do not exceed a chain speed of 450 FPM Fabricated steel sprockets are recommended.


^③ Chain furnished with attachment every pitch.

⁽⁴⁾ Furnished as standard with G5attachment every second pitch.


When assembled with through rods, the roller flage is on the side opposite the end of the rod.
 We heat treatment and dimension specifications for Rex Chain; Consult factory for Link-Belt specifications.

ENGINEERED STEEL – With Rollers

For an explanation of rated working load, and for application guidance, refer to Design and Selection or call Rexnord.

STYLE T $^{\textcircled{1}}$

ROLLERS

STYLE B

Pro	ne	rti.	ρs

Thru -Hardened
Carburized
Circumferentially Induction Hardened
Selectively Induction Hardened
White Iron

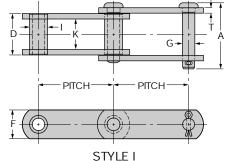
Dimensions are in inches. Strengths, loads and weights are in pounds.

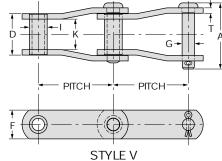
	Link-			Rated	Rec.	Minimum	Average	Over-All	Between	Sideba	ars		Pins		Ro	ollers			hings	Sprocket
Rex Chain No.	Belt	Style	Average Pitch	Working		Strength	Weight	Cotter	Sidebars	Thickness	Height	Diam.	Properties	Face Width	Outside Diam.	Style	Properties	u enamu	Outside Diam.	Unit
Channio.	Chain No.		1 IGH	Load	12T. Spkt. ^①	Lbs. x 10 ³	Per Foot	Α	К	Т	F	G	i i operaes	Ε	Н	Julyic	ropertes	D	Ι	No. [@]
									2.000-Inc	ch Pitch										
E1211	RS1211	R	12.000	4,650	14	31	7.0	3.44	1.50	.31	2.00	.63	CARB	1.38	3.00	A	CARB	2.13	.89	E1211
	SS4038			6,200		29	9.0	3.82	1.63	.38	2.00		TH	1.56		A	WI	2.38	1.13	4038
ER1222	SS1227	R	12.000	7,200	14	34	10.0	4.31	2.00	.38	2.00	.75	TH	1.63	3.50	Α	WI	2.75	1.13	E1222
FR1222	SS1222	Т	12.000	7,200	14	34	10.5	4.31	2.00	.38	2.00	.75	TH	1.25	4.50	D ^⑤	WI	2.75	1.13	F1222
	SS1232	Т	12.000			46	12.0	4.20	2.00	.38	2.00		TH	1.31	4.50	В	WI	2.75		F1232
R1251		Κ	12.000	9,000	14	56	9.8	4.90	1.94	.50	2.00		CARB	1.88	-	Α	CARB	2.94	1.25	2397
ER1233		R	12.000	9,200	14	61	13.1	4.64	2.25	.38	2.50		TH	1.75	4.00	E	WI	3.00	1.25	E1233
FR1233	SS1233	Т		9,200		62	14.0	4.64	2.25	.38	2.50		TH	1.56		D ^⑤		3.00		F1233
RR 2397		K	12.000		14	60	9.5	4.64	2.25	.38	2.50		CARB	2.19		A	CARB	3.00	1.25	2397
4011 ³	50 4050	R	12.000	-/		63	12.6	4.62	2.25	.38	2.50		-	2.12	3.00	A	TH	3.00	1.25	4011
	RS 4850	R		9,200		63	12.7	4.57	2.19	.38	2.50		TH	2.13		A	TH	2.94	1.26	4011
ER1244		R		12,300		85	20.5	5.53	2.63	.50		1.00		2.50		A	CARB	3.63		E1244
FR1244		I		12,300		63	21.5	5.53	2.63	.50		1.00		1.75		D	WI	3.63		F1244
R1706		K		14,000		79	13.9	5.99	3.00	.50	2.50			2.94		A	CARB	4.00	1.50	2452
R2614 R4010 ^④		K		17,500		135 185	24.0 39.2	6.26 6.79	2.75 3.25	.63 .63		1.25		2.69		A	CARB CARB	4.00 4.50	1.75	2614 4010
R4010~		R	12.000	23,500	14	165	39.2				4.00	1.50		3.09	4.50	A	CARD	4.50	2.13	4010
								18	3 000-lnc	ch Pitch										
ER1822		R	18.000	7,200	8	34	8.5	4.31	2.00	.38	2.00	.75	TH	1.63		A	WI	2.75	1.13	E1822
FR1822		Т	18.000	7,200		34	9.0	4.31	2.00	.38	2.00		TH	1.25	3.50	D	WI	2.75		F1822
F1833		Т		9,200		63	11.5	4.72	2.25	.38	2.50		TH	1.50		D	WI	3.00		F1833
FR1844		Т	18.000	12,300	8	89	17.0	5.66	2.63	.50	2.50	1.00	TH	1.75	5.00	D	WI	3.63	1.50	F1844

STYLE D

Sidebars are thru-hardened; bushings are carburized.^① If driver has more *l*ess than 12 teeth, increase *l*decrease RPMin direct ratio of number of teeth to 12. Do not exceed a chain speed of 450 FPM

⁽²⁾ Fabricated steel sprockets are recommended.


^③ Furnished as standard with G116attachment every second pitch.


⁽⁴⁾ Furnished as standard with G5attachment every second pitch.

⁽⁵⁾ Heat treatment and dimension specifications for Rex Chain; Consult factory for Link-Belt specifications.

ENGINEERED STEEL – Without Rollers

For an explanation of rated working load, and for application guidance, refer to Design and Selection or call Rexnord.

Properties	5
TH	Thru -Hardened
CARB	Carburized
CIH	Circumferentially Induction
	Hardened
SIH	Selectively Induction Hardened
WI	White Iron

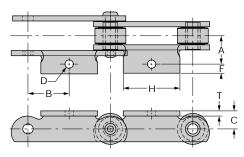
Dimensions are in inches. Strengths, loads and weights are in pounds.

		1			Rec.	Minimum	I.	Over-All			Sidebars		Ē	Pins	Bus	hings	r I
Rex	Link- Belt	Style	Average	Rated Working	Maximum	Ultimate	Average Weight	Pin &	Between			1				Outside	Sprocket Unit
Chain No.	Chain No.	Sigie	Pitch	Load	R.P.M for	Strength,	Per Foot	Cotter	Sidebars	Thickness	Height	Properties	Diam.	Properties	Length	Diam.	No. ^②
	Gildininio.			Loud	12 T. Spkt 🛈	Lbs. x10 ³	1 01 1 000	Α	K	Т	F		G		D	I	
							1. 50	6-Inch F	Pitch								
	SS152		1.506	1,230	280	6	2.2	1.81	.81	.16	.88	TH	.31	CARB	1.13	.63	152
							2 60	9-Inch F	Pitch								
S188®	SBS188		2.609	2,740	145	23	3.8	2.69	1.06	.25	1.13	TH	.50	CARB	1.57	.88	78
		1				-		5-Inch F		-	_				-		_
ER131®	SBS131		3.075	4,450	110	36	7.4	3.52	1.31	.38	1.50	TH	.63	CARB	2.06	1.25	103
1536	SBS1972	l i	3.075	4,900	110	51	9.2	3.56	1.50	.38	1.75	TH	.63	TH	2.26	1.25	1536
	SB02103	v	3.075	5,000	110	28	5.6	3.03	1.38	.25	1.50	TH	.75	CARB	1.88	1.25	103
1535	SBS 2162	I.	3.075	5,300	110	50	9.4	3.58	1.38	.38	1.75	TH	.75	CARB	2.14	1.25	1535
							4.00	O-Inch F	Pitch								
R2823		V	4.000	3,170	75	21	3.2	2.94	1.31	.25	1.13	TH	.50	CARB	1.81	.78	823
S823		Ň	4.000	3,450	75	22	5.2	3.08	1.47	.25	1.25	TH	.50	CARB	1.97	.78	823
SR825		V	4.000	6,000	75	55	8.7	3.87	1.56	.38	2.00	TH	.75	CARB	2.31	1.14	825
ER102B9	SBS102B	1	4.000	6,300	75	36	6.9	4.37	2.13	.38	1.50	TH	.63	CARB	2.89	1.00	102B
	SBS 2236		4.000	9,900	75	119	19.2	4.90	1.91	.56	2.38	TH	.94	CARB	3.03	1.75	2236
							4.04	0-Inch F	Pitch								
ER102.59	SBS102 5	1	4.040	7,800	75	48	9.4	4.56	2.25	.38	1.75	TH	.75	CARB	3.01	1.38	102 ¹ /2
							4.76	O-Inch F	Pitch								
ER111®	SBS111		4.760	8,850	55	48	10.2	4.97	2.63	.38	2.00	TH	.75	SIH	3.39	1.44	111
			4.700	0,000	00	-	-	_	Inch Pitcl		2.00	111	.70	511	0.00	1.11	
			4.760														
ER111Sp79			7.240	8,850	40	48	8.8	4.97	2.63	.38	2.00	TH	.75	SIH	3.38	1.44	111Sp.
							6.00	0-Inch F	Pitch								
SR830			6.000	6,000	40	50	7.5	3.87	1.56	.38	2.00	TH	.75	CARB	2.31	1.16	830
ER110 ⁹	SBS110	L i	6.000	6,300	40	36	6.3	4.37	2.13	.38	1.50	ТН	.63	CARB	2.89	1.25	110
ER833	020110	L i	6.000	8,900	40	48	9.3	4.97	2.63	.38	2.00	TH	.75	SIH	3.38	1.44	833
SR844	SBS844	V®	6.000	9,000	40	52	10.4	5.31	2.50	.50	2.00	TH	.75	CARB	3.50	1.19	844
6826		V	6.000	9,600	40	68	12.0	5.03	2.38	.38	2.50	TH	.88	SIH	3.13	1.50	6826
ER8569	SBX856			14,000	40	82	16.5	5.99	3.00	.50	2.50	TH	1.00		4.00	1.75	856
ER956 ³ ER857 ³	SBX 2857			14,000 14,000	40 40	97 97	16.6 21.0	5.99 5.99	2.95 3.00	.50 .50	3.003 3.253	TH TH	1.00	CIH	4.00	1.75 1.75	856 856
LK03/~	SBS850+	L i		16,000	40 40	128	25.3	6.18	2.25	.63	3.25®	TH	1.31	SIH	3.51	2.00	RO 850
R0850	SB0850+	V		16,100	40	1428	24.6	6.18	2.25	.63	3.25	TH	1.31	CIH	3.51	2.00	R0850
ER958				16,300	40	97	21.0	6.07	3.00	.56	3.25	TH	1.13	CIH	4.13	2.00	958
	SS1654	1		18,300	40	175	35.4	6.38	2.25	.63	4.006	TH	1.50		3.51	2.50	1654
ER8593	SBX 2859			22,000	40	155	34.0	7.62	3.75	.63	4.006	TH	1.25	CIH®	5.00	2.38	859
	SB06065	V	6.000	27,600	40	420	51.7	6.86	3.00	.75	4.75	TH	1.75	TH	4.50	3.00	6065
									nch Pitch								
ER1509	SBS150+			15,000	40	85	16.6	6.36	3.34	.50	2.50	TH	1.00	SIH	4.35	1.75	132
ERA15049				15,000	40	82	16.6	6.34	3.34	.50	2.50	TH	1.00		4.34	1.75	132
SX175	CDV 200 4		6.050	18,500	40	114	24.5	6.69	3.19	.63	3.00	TH	1.19	CIH	4.44	2.00	SX175
ER 864 ³ ER 984	SBX 2864			22,000	40 40	155	33.0 33.0	7.62	3.75	.63	4.00 [©] 4.00	TH TH	1.25	CIH CIH	5.00	2.38	864 984
SX886		V	7.000	24,000 24,000	40 40	155 255	42.0	7.35 6.79	3.75 2.75	.62 .75	4.00	TH	1.38 1.63		5.00 4.25	2.50 2.63	984 SX886
57000	SBS 4871			24,000 15,300	40 40	≥55 91	42.0	6.79	3.38	.75 .50	3.00	TH TH	1.63	SIH	4.25 4.35	2.63	1903
Sidobars an		<u> </u>			_	J	14.0	0.21	5.50	.50	5.00		1.00	511	4.55	1.75	1303

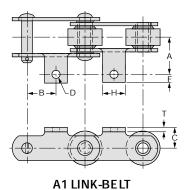
ENGINEERED STEEL

Sidebars are thru-hardened; bushings are carburized.

 $^{(0)}$ If driver has more less than 12 teeth, increase lacrease RPMin direct ratio of number of teeth to 12. Do not exceed a chain speed of 450 FPM


 $^{\textcircled{O}}$ Fabricated steel sprockets are recommended. [®] Both pins in a pin link have their heads on the same side. In the assembled chain the pin links are staggered

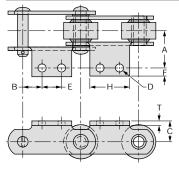
Outer (pin link) sidebar edges furnished as standard.
 Outer (pin link) sidebars are 2.50 inches high.
 Outer (pin link) sidebars are 3.00 inches high.


⁽²⁾ No. S111 SP: has same inner link as No. S111 – 4.760-inch pitch.

[®] Heat treatment and dimension specifications for Rex Chain; Consult factory for Link-Belt specifications.

[®] Now known as ER Series chain. Previous prefix was S, ES, RS or SX.

A1 REX


Г B

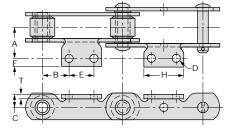
A2REX

Dimensions are in inches. Weights are in pounds.

Rex	Link-Belt		i		D	Ū.				Jimensions				
Chain No.	Chain No.	A	В	С	Bolt Dia.	Bolt Hole	E	F	G	н	J	к	Т	Wgt. Per Foot
Channio.	Channio.				BUIL DIA.	A1								Per Pool
4		1.38	200	.88	³ /8	.41	-	.53	-	275	-	-	.25	4.7
SR1832		1.47	1.50	.81	⁵ /16	.34	-	.53	-	200	-	-	.19	4.4
SR194 SR196		200	200	1.13	3/8 37	.41	-	.63	-	3.25	-	-	.19	6.3
		200	3.00	1.25	³ /8	.41	-	.76	-	3.50	-	-	.25	6.6
S188 RR432		1.88	1.31	.81	3/8	.41	-	.69	-	212	-	-	.25	4.5
RR 588		1.38	.83	.81	¹ /4 ⁵ /16	.28	-	.41	-	1.00 213	-	-	.19	4.0
RR778		1.94 1.94	1.31 1.31	.88 .88	⁵ /16	.34 .34	-	.90 .72	-	213	-	-	.25	4.0
RR1120		1.94	200	.80	3/8	.34 .41		.72	-	213	_	-	.19 .19	26 3.6
1539		1.38	1.53	1.25	³ /8 ¹ /2	.41	-	.63	_	3.00			.19	
2188		1.69	200	1.25	3/8	.30	-	1.03	-	275	-	-	.31	7.9 7.9
2100	RS 60	3	2.38	1.25	1/2	.53	_	.71	_	1.75	_	_	.38	9.2
	RS 625	1.19	.83	.69	¹ /4	.33	_	.53	_	.88	_	_	.13	3.2
	RS 627	1.38	.83	.81	1/4	.28	_	.53	_	1.00	_	_	.13	4.6
	RS 1539	1.88	1.53	1.25	1/2	.56	_	.65	_	2.75	_	_	.13	7.9
	RS 2188	1.81	2.00	1.00	1/2	.56	_	.85	_	3.00	_	_	.31	7.9
	RS 3013	1.47	1.50	.81	5/16	.30	_	.43	_	2.25	_	_	.19	4.5
	RS 4013	1.38	2.00	.81	3/8	.41	_	.53	_	2.50	-	_	.19	3.9
	RS 4019	1.38	200	.88	³ /8	.41	_	.55	_	250	_	_	.15	4.8
	RS 4113	1.72	200	1.00	3/8	.41	_	.59	_	2.50	_	_	.19	4.7
	S 4216	2.00	200	1.13	3/8	.41	-	.60	-	3.38	-	-	.19	5.6
	S 4328	2.00	200	1.25	¹ /2	.56	_	.88	_	2.00	-	-	.38	10.7
		100	100		2 made also		with offse		rs	100			100	1017
4		1.38	1.05	.88	³ /8	.41	1.50	.53	_	275	-		25	4.7
6		213	1.25 1.69	1.63	¹ /2	.41	2.63	.53	_	2.75 5.50	_	-	.25 .38	4.7
6 Sp.		213	1.69	1.63	1/2	.53	263	.72	-	5.50	-	-	.38	14.2
A2124		219	1.50	1.63	1/2	.53	3.00	.72	_	4.50	_	_	.38	13.8
SR1832		1.56	.97	.81	1/4	.33	1.06	.44	_	200	_	_	.30	4.6
SR188 ²		2.00	.754	1.00	3/8	.20	2.004	.52	_	3.38	_	_	.19	4.9
SR194		200	1.00	1.13	3/8	.41	200	.63	-	3.25	-	-	.19	6.3
SR196		200	200	1.25	3/8	.41	200	.76	_	3.50	-	-	.25	6.6
E911		2.56	275	1.75	1/2	.53	3.50	1.00	-	5.50	-	-	.25	10.6
FR922		2.88	275	2.50	1/2	.53	3.50	1.00	_	5.50	_	_	.25	14.6
FR933		3.00	275	2.88	¹ /2	.53	3.50	.90	-	5.50	-	-	.31	19.4
ER102B		2.66	1.13	1.13	3/8	.41	1.75	.81	-	4.25	-	-	.38	9.4
S188		2.09	.67	.81	5/16	.34	1.25	.47	-	213	-	-	.25	4.5
S 951		219	200	1.63	3/8	.41	200	.84	_	3.50	_	_	.25	127
SR1114		200	200	1.13	3/8	.41	200	.69	-	3.50	-	-	.31	8.5
RS1131		3.00	1.69	1.63	1/2	.56	263	.69	-	4.50	-	-	.38	15.5
1539		2.00	.59	1.25	⁵ /16	.34	1.88	.58	-	3.00	-	-	.31	7.9
2126		2.00	200	1.13	3/8	.41	200	.75	-	3.50	-	-	.25	60
2180		2.38	200	1.63	1/2	.56	200	.81	-	3.50	-	-	.38	10.2
2188		1.81	1.13	1.00	1/2	.56	1.75	.91	-	275	-	-	.31	7.9
3420		2.06	1.27	1.25	3/8	.41	1.50	1.00	-	275	-	-	.31	9.3

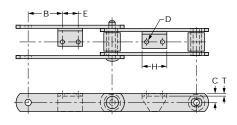
All attachments are thru-hardened. ⁽¹⁾ All holes round and straight. ⁽²⁾ A1/A2 and K1/K2 attachments are combined on the same side bar. ⁽³⁾ 2 20⁄E on outside sidebar, 1.78' on inside sidebar. ⁽³⁾ Not Central.

A2Figure 1


A2Figure 2

t,

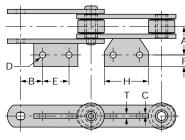
φ


φ

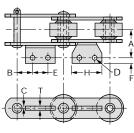
в

(

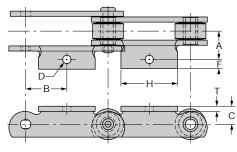
A3LINK-BELT

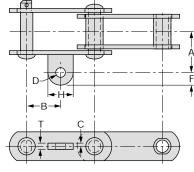

D-⊷B

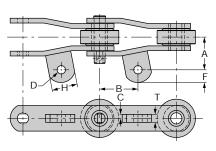
Dimensions are in inches. Weights are in pounds. D1 Rex Link-Belt Wgt Α В С Ε F G н J Κ Т Chain No. Per Foot Chain No. Bolt Hole Bolt Dia. A2 Figure 1 RS 658 3/8 263 1.50 2.50 44 3.00 79 4.38 31 122 RS 886 2.09 .67 .81 ⁵/16 34 1.25 61 213 19 3.7 1.25 213 RS 887 2.09 .67 .88 5/16 38 .46 4.5 .25 _ _ 219 206 .72 .71 RS 951 ³/8 200 1.63 44 200 _ 4.13 --31 124 3/8 RS 1113 1.27 1.25 .41 1.50 250 .31 9.3 200 200 1.13 3/8 .41 200 85 3.50 .31 8.5 RS 1114 ---RS 1116 3/8 200 200 1.13 44 200 .69 2.88 _ _ .25 60 RS 1131 3.00 1.69 1.63 $1/_{2}$ 56 263 69 5.50 -.38 15.5 -RS 1539 1.98 1.25 5/16 34 1.88 275 .59 .58 31 7.9 ¹/2 3/8 RS 2188 .31 .25 7.9 7.2 1.81 1.13 1.00 56 1.75 86 3.00 ---RS 2190 200 200 1.13 41 200 .69 2.88 _ RS 4013 RS 4019 ⁵/16 ³/8 1.38 1.41 .81 34 1.19 53 2.50 .19 3.9 _ _ _ 1.38 1.25 .88 .41 1.50 .45 2.50 .25 47 RS 6018 200 2.00 1.25 3/8 44 200 .61 -3.00 --25 6.6 1/2 2.63 RS 6238 213 1.69 1.63 56 .79 5.50 38 13.3 _ -RS 6438 213 263 1/2 75 5.50 14.8 1.69 1.63 56 38 A2 Figure 2 RS 911 1/2 5.50 10.6 256 2.75 1.75 53 3.50 1.00 25 SS 922 2.88 2.88 275 275 2.50 2.50 1/2 1/2 5.50 5.50 .25 .25 .53 .53 3.50 1.00 -14.6 SS 927 3.50 13.9 1.00 _ _ SS 933 RS 1211 3.00 275 2.88 1/2 .53 3.50 1.41 5.50 -_ .31 20.7 1/2 .53 2.56 300 1.75 6.00 1.00 800 .25 95 _ SS 1222 2.88 2.50 1/2 .53 6.00 25 129 3.00 1.00 8.00 Α3 ER1222 2.88 3.00 2.50 $^{1}/_{2}$ 3.00 1.00 8.00 .25 131 .53 _ FR1222 2.50 3.00 2.88 3.00 1/2 1/2 .53 3.00 1.00 8.00 _ 25 129 -_ 3.25 1.25 31 17.1 ER1233 3.00 53 3.00 8.00 3.25 3.75 3.00 1/2 1/2 .53 .53 3.00 3.00 1.25 .31 .38 FR1233 8.00 3.00 17.1 _ --3.00 1.13 E1244 3.63 800 25.8 _ _ _ FR1244 3.75 3.00 3.63 1/2 .53 3.00 1.13 8.00 38 25.8 ---F1822 1/2 .53 2.88 3.50 2.50 5.50 1.00 14.00 .25 11.4 _ 1/2 5/8 F1844 3.75 3.50 3.63 .53 5.50 1.59 14.00 38 22.3 ---3.13 275 2348 3.25 1.25 .66 1.28 8.00 38 181 RS 9532 2.34 200 1.00 9/16 200 9.9 53 77 3.25 38 Α5 1/2 38 9.4 SS928 3.38 1.00 56 2.25 3.50 SS942 3.38 1.25 ¹/2 56 2.25 3.50 38 13.3 4.88 1.25 1/2 56 2.25 3.50 38 14.7 SS1242

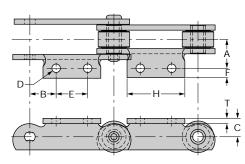

All attachments are thru-hardened. ^① All holes round and straight.

⁽²⁾ Sidebars have .76th holes located on pitch-line midway between chain joints.


engineered Steel


A11 REX

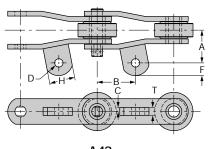

A11 LINK-BELT


A17

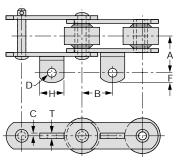
A22 LINK-BE LT

A22 REX

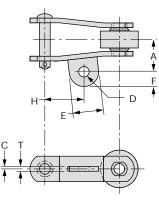
A20, A23 and A25

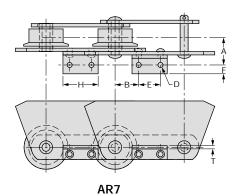

										Dimension	s are in	inches.	Weights are	e in pounds.
Rex	Link-Belt	А	В	с	D	D	E	F	G	н	J	К	т	Wgt.
Chain No.	Chain No.	n		Ŭ	Bolt Dia.	Bolt Hole	-	•	Ū		,	Ň	•	Per Foot
						A11								
6		275	1.56	.19	1/2	.53	2.88	.84	-	4.50	-	-	.38	12.5
S951		219	200	.25	3/8	.41	2.25	.72	-	3.25	-	-	.25	12.0
2190		256	1.88	.19	1/4	.28	2.25	.50	-	3.25	-	-	.25	7.6
	RS 658	231	213	-	3/8	.39	1.75	.87	-	3.00	-	-	.19	120
	RS 2190	256	1.88	-	1/4	.28	2.25	.59	-	3.25	-	-	.38	7.9
	RS 6238	275	1.56	-	1/2	.56	2.88	1.00	-	4.50	-	-	.38	12.4
						A17								
531		200	200	1.31	1/2	.53	-	.72	_	1.50	_	-	.38	10.0
						A20								
2183		200	1.75	2.00	3/8	.41	250	.80	_	3.50	_	-	.31	11.7
F2183		200	1.75	200	3/8	.41	2.50	.63	-	3.50	_	-	.31	12.2
2190		200	200	1.13	³ /8	.41	200	1.03	-	3.50	-	-	.25	7.9
				A2	22 made also	o for chain v	with straig	ght sideb	ars.					
\$188		1.78	1.31	.08	3/8	.41	-	.59	-	1.25	-	-	.31	4.8
3420		238	200	.25	5/8	.69	-	.92	-	200	-	-	.50	9.1
						A22								
	SBS 188	1.78	1.31	.19	3/8	.41	-	.59	_	1.19	_	-	.38	4.8
						A23								
FR922		3.41	3.13	1.00	1/2	.56	2.75	.88	-	4.75	-	-	.25	13.6
FR933		4.13	3.13	1.25	1/2	.56	275	.88	-	4.75	_	-	.25	18.6
FR1244		4.50	3.25	1.50	⁵ /8	.66	5.50	.88	-	7.50	_	-	.38	25.8
	-	-	-		-	A25								
S951		3.19	200	1.31	1/2	.56	200	.75	-	3.50	-	-	.25	13.2
2183		290	219	1.00	3/8	.41	1.63	.67	-	3.13	-	-	.25	11.4
F2183		290	219	1.00	3/8	.41	1.63	.67	-	3.13	-	-	.25	128

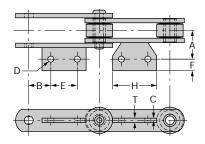
imensions are in inches. Weights are in pounds


All attachments are thru-hardened. ^① All holes round and straight.

Note: Dimensions are subject to change. Certified dimensions of ordered material are furnished upon request.


ENGINEERED STEEL

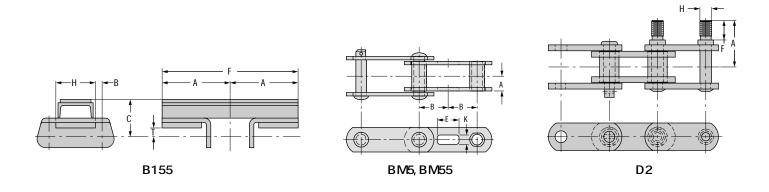


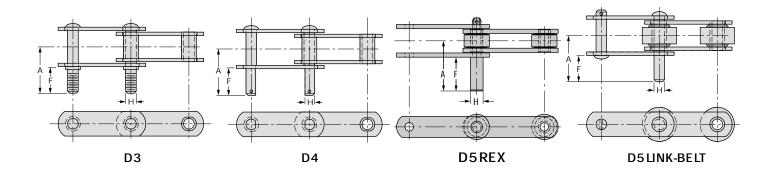


A42 Figure 1

A42 Figure 2

A63


Dimensions are in inches. Weights are in pounds.

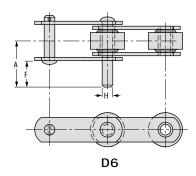

Rex Chain No.	Link-Belt Chain No.	A	В	С	D ⁽ Bolt Dia.	D Bolt Hole	E	F	G	н	J	К	т	Wgt. Per Foot
						A42								
6		2.56	3.00	.31	5/8	.66	_	.86	_	2.00	-	_	.63	12.3
SR183		1.31	1.50	.13	⁵ /16	.34	_	.38	_	.88	_	_	.25	4.2
SR825		2.75	213	.31	⁵ /8	.66	-	.81	-	1.50	-	-	.63	9.4
SR830		2.56	3.00	.31	3/4	.78	_	1.00	_	2.00	_	_	.63	8.1
RR1120		1.63	2.00	.19	3/8	.41	-	.63	-	1.25	-	-	.38	3.5
RS1131		2.59	3.00	.31	5/8	.66	_	1.00	_	2.00	-	_	.63	13.8
1604		1.75	3.00	.19	3/8	.41	-	.63	-	1.25	-	-	.38	6.6
2180		2.69	3.00	.22	5/8	.66	_	.56	_	1.50	-	_	.44	10.2
F2184		2.56	3.00	.31	5/8	.66	-	1.00	-	2.00	-	-	.63	13.5
SR 31 30		2.38	3.00	.31	5/8	.66	-	.81	-	2.00	-	-	.63	11.0
						A42 Figu	ire 1							
	RS1113	2.38	2.02	.25	⁵ /8	.66		.94		1.50		_	.50	9.1
	RS1113	2.50	3.00	.25	⁵ /8	.69	-	1.00	-	2.00	-	_	.63	13.8
	RS2284	2.63	3.00	.31	5/8	.69	-	1.08	-	2.00	-	-	.63	13.1
	RS 2284+	2.63	3.00	.31	⁵ /8	.69	_	1.08	_	2.00	_	_	.61	13.1
	RS 2600	3.75	3.00	.31	5/8	.69	-	.91	-	2.00	-	-	.61	27.7
	RS 3013	1.56	1.50	.13	3/8	.41	-	.45	-	1.25	-	-	.25	4.3
	RS 4013	1.63	2.00	.19	³ /8	.41	_	.50	-	1.25	-	-	.38	3.7
	RS 6238	2.56	3.00	.31	⁵ /8	.66	-	.81	-	2.00	-	-	.61	11.3
	RS 6438	2.56	3.00	.31	⁵ /8	.66	-	.81	-	2.00	-	-	.61	13.0
						A42 Figu	ire 2							
	RO 2113	2.38	2.00	.25	⁵ /8	.66	_	.75	_	1.50	_	-	.50	9.5
	RO 2284	2.63	3.00	.31	5/8	.69	-	.88	-	2.00	-	-	.63	13.1
	RO 2284+	2.63	3.00	.31	5/8	.69	-	.88	-	2.00	-	-	.63	13.1
					·	A63		, i i i i i i i i i i i i i i i i i i i		·				·
4		1.63	1.25	.13	⁵ /16	.34	1.50	.66	_	2.50	_	_	.25	4.8
•		1.03	1.23	.15	/10	.34 AR7		.00	_	2.50	_	_	.20	4.0
	DC 050	0.01	010		5.4			75		2.00			10	107
All attackments	RS 658	2.31	213	-	⁵ /16	.39	1.75	.75	-	3.00	-	-	.19	18.7

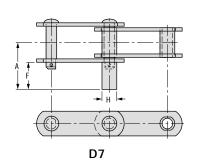
All attachments are thru-hardened. ^① All holes round and straight.

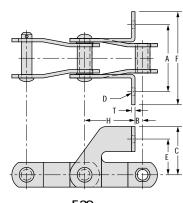
18

ENGINEERED STEEL

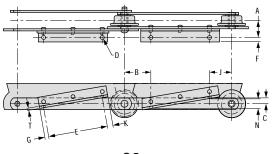
Rex Chain No.	Link-Belt Chain No.	A	В	С	D ⁽⁾ Bolt Dia.	D Bolt Hole	E	F	G	Н	J	К	т	Wgt Per Foot
						B15	5							
ER150 ⁵		-	.78	4.25	-	-	-	15.50	-	4.50	-	-	1.00	49.6
						BM5	2)							
	SS2004	.88	1.31	-	-	-	1.28	-	-	-	-	.66	-	6.9
						BM55	3							
	SBS1972	1.13	1.88	-	-	-	1.28	-	-	-	-	.66	-	9.2
	SBS 3336	1.02	200	-	-	-	1.28	-	-	-	-	1.06	-	21.1
	SS2004	.88	1.31	-	-	-	1.28	-	-	-	-	.66	-	6.9
						D2								
1535		297	-	-	-	-	-	1.25	-	.75	-	-	-	88
						D3								
	SBS 3336	3.54	-	-	-	-	-	1.44	-	.93	-	-	-	22.7
	SBS 2236	3.54	-	-	-	-	-	1.44	-	.90	-	-	-	21.0
						D4								
	SBS 2162	3.15	-	-	-	-	-	.88	-	.75④	-	-	-	10.2
						D5								
4		297	-	_	-	-	-	200	-	.75	-	-	-	4.9
	RS 303	208	-	-	-	-	-	1.44	-	.50	-	-	-	22
	RS4019	299	_	-	-	-	-	200	-	.75	-	-	-	5.1

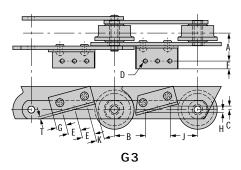

Dimensions are in inches. Weights are in pounds.

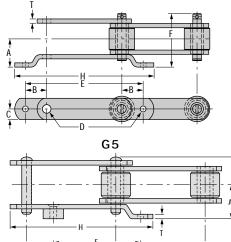

All attachments are thru-hardened.
All holes round and straight.
F orged attachment sidebar on one side has slotted hole. P lain steel sidebar on opposite side.
S teel slotted sidebars on both sides.

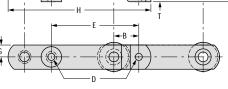

⁽⁴⁾ A ttachment threaded .88" back from end. Threads are 3/4-10 N C 2A.

 $^{\textcircled{M}}$ N ow known as E R $\,$ S eries chain. P revious prefix was S X .

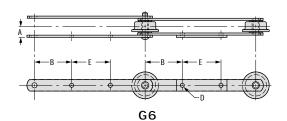

ENGINEERED STEEL

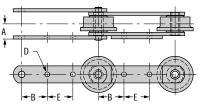


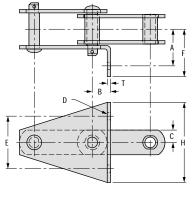

	Rex	Link-Belt	А	В	С	D		E	F	G	н	L	к	т	Wgt
Ch	ain No.	Chain No.				Bolt Dia.	Bolt Hole		-					-	Per Foot
							D6								
		RS 301 3	2.39	-	-	-	-	-	1.50	-	.63	_	-	-	4.8
		SS152	2.23	-	-	-	-	-	1.50	-	.50	-	-	-	2.4
							D7								
		SS152	2.23	Ι	-	-	-	-	1.50	-	.56	-	-	-	2.6
							F29								
		SB02103	3.50	.63	2.68	3/8	.44	-	4.88	-	2.45	-	-	.25	8.0
							G2								
		SS922	3.03	3.34	.81	⁷ /16	.47	2.75	.84	.63	-	3.03	.63	.25	22.4
		SS933	3.16	3.25	1.03	⁷ /16	.47	2.75	.84	.63	-	3.13	.63	.25	29.6
		SS1233	3.16	3.94	1.69	⁵ /8	.68	4.50	.84	1.69	-	3.69	1.69	.25	21.3
			G3 This	s attachm	ent made	with high si	debars of 3	3.50 to 8	inches; v	eights are	e for 6-inch	bars.			
F	R922		3.03	3.38	.39	3/8	.41	1.38	.75	1.06	.33	2.97	.88	.25	22.4
EF	R1233		3.16	3.94	.63	⁷ /16	.47	2.25	.84	1.69	.47	3.69	1.69	.25	21.3
FF	R1233		3.16	3.94	.63	⁷ /16	.47	2.25	.84	1.69	.47	3.69	1.69	.25	21.3


Dimensions are in inches. Weights are in pounds.

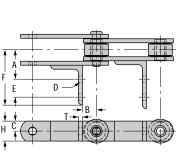
All attachments are thru-hardened. ^① All holes round and straight.


Note: Dimensions are subject to change. Certified dimensions of ordered material are furnished upon request.

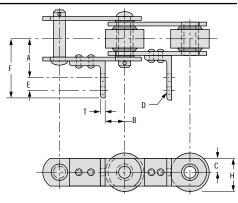

ENGINEERED STEEL

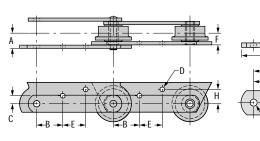


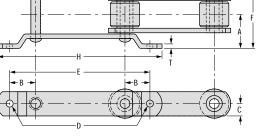
G16, G17, G18

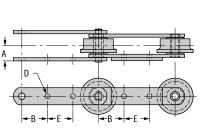

Dimensions are in inches. Weights are in pounds.

Rex	Link-Belt	A	В	с	D	D	E	F	G	н	J	к	т	Wgt
Chain No.	Chain No.	^	В		Bolt Dia.	Bolt Hole	E	r	6	п	,	n.	1	Per Foot
						G5								
4004		3.34	2.50	1.25	5/8	.66	14.00	6.34	-	16.50	_	-	.50	18.5
R 4009		3.03	2.50	1.25	⁵ /8	.66	14.00	5.53	-	16.50	_	_	.38	14.7
4010		3.90	3.38	2.00	¹³ /16	.84	18.75	7.38	-	21.25	-	-	.63	39.2
4065		3.94	2.50	1.75	5/8	.66	14.00	7.00	-	16.50	-	-	.63	38.6
						G6								
	RS911	1.39	3.13	_	⁷ /16	.50	2.75	-	-	-	_	-	_	9.6
	SS922	1.78	3.00	-	1/2	.53	3.00	-	-	_	_	-	_	13.9
	SS927	1.78	3.00	_	1/2	.53 ^②	3.00	-	-	_	_	-	-	13.2
	SS933	1.91	3.25	-	1/2	.53	2.50	-	-	-	-	-	-	18.1
	SS1222	1.78	4.13	-	1/2	.53	3.75	-	-	-	-	-	-	11.6
	SS1227	1.78	4.13	-	1/2	.53 ²	3.75	_	_	_	_	_	-	11.8
	SS1232	1.78	4.13	-	1/2	.53	3.75	-	-	-	-	-	-	13.0
	SS1233	1.91	4.13	-	1/2	.56	3.75	-	-	_	-	-	_	15.4
	SS4038	1.59	4.13	-	¹ /2	.53 ^②	3.75	-	_	-	-	-	-	10.1
	RS 4850	1.88	4.13	-	3/4	.783	3.75	-	-	-	-	-	-	16.4
						G12								
	RS 4851	3.41	2.50	_	¹ /2	.56	9.00	5.53	1.25	13.82	_	_	.38	14.5
	RS 4852	3.86	2.50	-	5/8	.66	9.00	3.78	1.25	13.82	-	-	.50	18.0
					G16 is calle	d G6 by so	me manu	facturers						
ER911		1.41	2.63	_	¹ /2	.56	3.75	_	_	_	_	_	_	9.6
ER922		1.78	3.00	_	1/2	.56	3.00	-	-	_	-	-	_	13.2
FR922		1.78	3.00	_	1/2	.56	3.00	-	-	_	-	-	-	13.9
ER933		1.90	3.25	-	1/2	.56	2.50	-	-	-	_	_	-	18.1
FR933		1.90	3.25	-	1/2	.56	2.50	-	-	-	-	-	-	18.1
E1211		1.41	4.13	-	¹ / ₂	.56	3.75	_	_	_	_	_	-	8.2
ER1222		1.78	4.13	-	1/2	.56	3.75	-	-	_	-	-	-	11.8
FR1222		1.78	4.13	_	1/2	.56	3.75	-	-	_	-	-	-	11.6
ER1233		1.90	4.12	-	⁵ /8	.69	3.75	-	-	-	-	-	-	21.3
FR1233		1.90	4.13	-	1/2	.56	3.75	-	-	-	-	-	-	15.4
ER1244		2.34	4.13	-	5/8	.69	3.75	-	-	-	-	-	-	23.2
FR1244		2.34	4.13	-	⁵ /8	.69	3.75	-	-	-	-	-	-	23.2
ER1822		1.78	6.00	-	1/2	.56	6.00	-	-	-	-	-	-	10.1
FR1822		1.78	6.00	-	1/2	.56	6.00	-	-	_	-	-	-	9.9
F1833		1.90	6.00	-	¹ / ₂	.56	6.00	-	-	-	-	-	-	12.8
FR1844		2.34	6.00	-	1/2	.56	6.00	-	-	-	-	-	-	18.8
2348		1.90	4.13	—	1/2	.56 G17	3.75			—			—	16.4
ER1244		2.34	4.13	_	5/8	.69	3.75	_	_	_	_	_	_	23.2
FR1244		2.34	4.13		1/2	.56	3.75	_	_					23.2
		2.30	1.15	_	12	.30 G18							_	21.0
FR922		1 7 0	212		1/2		2.75							125
All attachmen	to ano thru har	1.78	3.13	-	'/2	.56	2.15	-	-	-	-	-	-	12.5


All attachments are thru-hardened ^① All holes round and straight. ^② C ountersunk head for inside sidebar. ^③ These chains have offset sidebars. ened.


G19

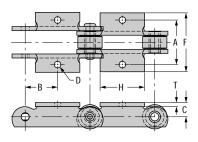

G 29 RE X


G 29 LINK-BELT

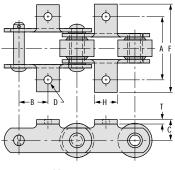
G 33

G100

G116, G117


		_	-	-			_	-	I	Dimensions	s are in i	inches. \	Neights are	e in pounds.
Rex Chain No.	Link-Belt Chain No.	A	В	С	D ⁽⁾ Bolt Dia.	Bolt Hole	E	F	G	н	J	К	т	Wgt. Per Foot
						G19								
	SS1222	2.78	2.63	-	1/2	.53	3.50	3.78	_	5.50	-	-	.25	13.9
	RS 4328	2.63	2.50	-	¹ / ₂	.53	3.25	3.26	-	2.50	-	-	.38	14.1
	SBS102B	3.00	1.50	-	1/2	.53	3.25	3.62	-	4.50	-	-	.38	8.9
	SBS188	2.19	.94	-	3/8	.41	2.63	2.64	-	3.75	-	-	.25	7.5
				G29	made also f	for inner (re	oller) link	ς;"F″is∶	3.69".					
4		1.84	.88	.63	3/8	.41	1.13	3.47 2	_	1.25	-	-	.25	5.3
						G29)							
	RS4019	1.84	3.13	.63	³ /8	.44	1.13	3.70	_	1.38	-	-	.25	5.4
					G33 we	ights are f	or 6-inch	bars.						
FR922		1.78	3.06	.94	¹ / ₂	.56	2.69	1.38	_	1.69	_	_	_	22.4
ER933		1.90	3.06	.94	1/2	.56	2.69	1.50	-	1.69	-	-	-	25.2
FR933		1.90	3.06	.94	¹ / ₂	.56	2.69	1.50	-	1.69	-	-	_	25.2
						G10	0							
	RS 4065	3.94	2.50	1.50	5/8	.69	14.00	7.44	_	_	_	_	.50	41.0
	RS 4851	3.03	2.50	1.25	⁵ /8	.69	14.00	5.44	-	-	-	-	.38	14.7
	RS 4852	3.34	2.50	1.25	⁵ /8	.69	14.00	6.21	-	-	-	I	.50	18.3
						G110	6							
4011		1.88	4.13	_	³ /4 ³	.81	3.75	_	_	_	-	-	_	12.6
						G11	7							
ER1244		2.38	4.13	_	¹ / ₂ ③	.56	3.75	_	_	_	-	-	_	21.5
FR1244		2.38	4.13	-	1/23	.56	3.75	-	-	-	-	-	-	21.5
R1251		2.00	3.00	-	1/23	.56	4.00	-	-	-	-	-	-	9.8
R1706		2.56	3.00	-	1/23	.56	4.00	-	-	-	-	-	-	1 3.9

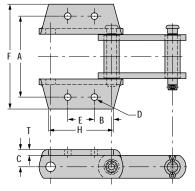
All attachments are thru-hardened. ^① All holes round and straight.


⁽²⁾ B lock links only.

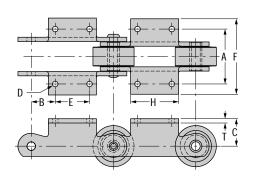
^③ R ound holes, countersunk on inside links.

ENGINEERED STEEL

K1 REX


K1 LINK-BELT

Dimensions are in inches	. Weights	are in	pounds.
--------------------------	-----------	--------	---------


Rex	Link-Belt				D	D	-	_						Wgt
Chain No.	Chain No.	A	В	С	Bolt Dia.	Bolt Hole	E	F	G	н	J	к	т	Per Foot
						K1								
4		2.75	2.00	.88	3/8	.41	-	3.81	-	2.75	_	-	.25	5.3
SR183 ²		2.94	1.50	.81	⁵ /16	.34	-	4.03	-	2.00	-	-	.19	4.9
S188		3.75	1.31	.81	³ /8	.41	-	5.12	-	2.12	-	-	.25	5.1
SR1882		3.44	2.00	1.00	3/8	.41	-	5.13	-	3.38	-	-	.19	5.9
SR1942		4.00	2.00	1.13	³ /8	.41	-	5.25	-	3.25	_	-	.19	7.3
SR196 ²		4.00	3.00	1.25	³ /8	.41	-	5.66	-	3.50	-	-	.25	7.5
RR432		2.75	.83	.81	1/4	.28	-	3.56	-	1.00	-	-	.19	5.7
RR 588		3.88	1.31	.88	⁵ /16	.34	-	5.66	-	2.13	-	-	.25	4.3
589		4.31	1.753	1.25	¹ /2	.56	-	6.38	-	2.00	-	-	.38	11.8
RR778		3.88	1.31	.88	⁵ /16	.34	-	5.28	-	2.13	-	-	.19	3.0
RR1120		2.75	2.00	.81	3/8	.41	_	4.03	-	2.50	-	-	.19	4.0
C1288		3.00	1.30	.81	3/8	.41	-	4.81	-	2.13	-	-	.16	3.7
1539		3.75	1.53	1.25	¹ /2	.56	-	5.16	-	3.00	-	-	.31	9.0
2188		3.38	2.00	1.00	³ /8	.41	-	5.44	-	2.75	-	-	.31	8.8
5208		6.88	3.00	1.25	3/4	.81	-	9.00	-	2.00	-	-	.38	12.6
6826 [©]		6.00	3.00	1.63	1/2	.56	-	7.19	-	3.88	-	-	.38	15.3
	R\$60	4.40	2.38	1.25	¹ /2	.53	-	5.83	-	1.75	-	-	.38	9.9
	RS625	2.38	.83	.69	1/4	.31	-	3.44	-	.88	-	-	.13	3.4
	RS627	2.75	.83	.81	1/4	.28	-	3.81	-	1.00	-	-	.19	5.7
	RS944+	4.75	2.50	1.63	5/8	.69	-	6.48	-	2.50	-	-	.38	11.5
	RS1539	3.75	1.53	1.25	¹ /2	.56	-	5.05	-	2.75	-	-	.31	9.0
	RS2188	3.63	2.00	1.00	¹ /2	.56	-	5.33	-	3.00	-	-	.31	8.8
	RS 301 3	2.94	1.50	.81	⁵ /16	.34	-	3.79	-	2.00	-	-	.19	5.1
	S4013	2.75	2.00	.81	3/8	.41	-	3.81	-	2.50	-	-	.19	4.4
	S4019	2.75	2.00	.88	³ /8	.41	-	4.83	-	2.50	-	-	.25	5.4
	RS4113	3.44	2.00	1.00	³ /8	.41	-	4.62	-	2.50	-	-	.19	5.2
	S4216	4.00	2.00	1.13	3/8	.41	-	5.24	-	3.38	-	-	.19	6.3
	RS 4328	4.00	2.00	1.25	1/2	.56	-	5.75	-	2.00	-	-	.38	11.7
	SBS188 ts are thru-har	3.75	2.00	.81	³ /8	.44	-	5.16	-	2.13	-	-	.25	5.1

All attachments are thru-hardened. ^① All holes round and straight. ^② Al /A 2 and K1 /K2 attachments are combined on the same side bar.

^③ N ot central.

K 2 for S102B, S102.5, ES1111, ES111SP, SR830 and ES833

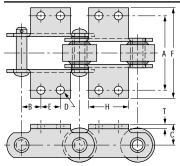
K2 for All Others

Dimensions are in inches. Weights are in pounds.

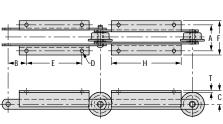
Rex	Link-Belt				D	D		1					_	Wgt
Chain No.	Chain No.	A	В	С	Bolt Dia.	Bolt Hole	E	F	G	Н	J	к	Т	Per Foot
					(2 made also		with offer	toidaha	r0					
									5.					
42		2.75	1.25	.88	³ /8	.41	1.50	3.81	-	2.75	-	-	.25	5.3
6		4.25	1.69	1.63	1/2	.56	2.63	5.69	-	5.50	-	-	.38	15.0
ER102B ³⁹		5.31	1.13	1.13	3/8	.41	1.75	6.94	-	4.25	-	-	.38	9.0
ER102 539		5.31	1.16	1.13	³ /8	.41	1.75	6.78	-	4.56	-	-	.38	13.4
ER11139		6.25	1.22	1.50	³ /8	.41	2.31	7.88	-	5.22	-	-	.38	15.2
ER111Sp. 39		6.25	1.22	1.50	3/8	.41	2.31	7.88	-	3.63	-	-	.38	13.0
ER1509		7.50	1.66	1.88	1/2	.56	2.75	9.81	-	4.25	-	-	.50	23.0
SR1832		3.13	.97	.81	1/4	.28	1.06	4.00	-	2.00	-	-	.19	4.9
\$188		4.19	.67	.81	⁵ /16	.34	1.25	5.13	-	2.13	-	-	.25	5.8
SR188 ²		4.00	.75 ^⑦	1.00	³ /8	.41	2.00⑦	5.03	-	3.38	-	-	.19	5.9
SR1942		4.00	1.00	1.13	³ /8	.41	2.00	5.25	-	3.25	-	-	.19	7.3
SR196 ²		4.00	2.00	1.25	3/8	.41	2.00	5.66	-	3.50	-	-	.25	7.5
S823 ⁽⁴⁾		5.25	1.44 ^⑦	1.06	³ /8	.41	1.69	6.88	-	2.75	-	-	.25	7.3
SR8254		6.00	.50	1.19	1/2	.56	2.63	8.88	-	3.75	-	-	.38	16.0
SR830 [©]		6.00	1.69	1.19	1/2	.56	2.63	7.66	-	6.34	-	-	.38	12.3
ER83339		6.25	1.84	1.88	1/2	.56	2.31	8.13	-	6.94	-	-	.38	20.2
SR844		6 & 4.9	1.56	1.19	¹ /2	.56	2.75	7.50	-	4.00	-	-	.50	14.9
ER911		5.13	2.75	1.75	1/2	.56	3.50	7.13	-	5.50	-	-	.25	12.7
ER922		5.75	2.75	2.50	1/2	.56	3.50	7.56	-	5.50	-	-	.25	16.0
FR922		5.75	2.75	2.50	1/2	.56	3.50	7.75	-	5.50	-	-	.25	16.6
ER933		6.50	2.75	3.00	⁹ /16	.62	3.50	8.00	-	5.50	-	-	.38	25.2
FR933		6.00	2.75	2.88	1/2	.56	3.50	7.81	-	5.50	-	-	.31	22.3
S951		4.38	2.00	1.63	³ /8	.41	2.00	6.31	-	3.50	-	-	.38	14.7
SR1114		4.00	2.00	1.13	3/8	.41	2.00	5.38	-	3.50	-	-	.31	10.7
RS1131		6.00	1.69	1.63	1/2	.56	2.63	7.38	-	4.50	-	-	.38	18.4
1539 ²		4.00	.59	1.25	⁵ /16	.34	1.88	5.16	-	3.00	-	-	.31	9.0
C2124 ⁵		4.38	1.50	1.63	1/2	.56	3.00	5.25	-	4.50	-	-	.38	15.8
A2124 ⁵		4.38	1.50	1.63	1/2	.56	3.00	5.25	-	4.50	-	-	.38	15.8
2126		4.00	2.00	1.13	³ /8	.41	2.00	6.06	-	3.50	-	-	.25	7.0
A2178 ⁵		4.38	1.50	1.63	1/2	.56	3.00	5.62	-	4.50	-	-	.38	15.3
2180		4.75	2.00	1.63	1/2	.56	2.00	6.22	-	3.50	-	-	.38	11.7
2188 2		3.63	1.13	1.00	1/2	.56	1.75	5.44	-	2.75	-	-	.31	8.8
A2198 ²		4.38	1.50	1.63	1/2	.56	3.00	6.00	-	4.50	-	-	.50	18.2
2858 ⁶		5.38	1.16	2.00	5/8	.69	1.75	6.75	-	6.38	-	-	.38	18.0
A2868		5.50	1.13	1.63	¹ /2 [®]	.56	1.75	7.00	-	5.75	-	-	.38	14.1
3285 [©]		6.50	1.00	2.06	3/4	.81	2.50	8.25	-	7.00	-	-	.50	40.0
3420		4.13	1.27	1.25	3/8	.41	1.50	6.13	-	2.75	-	-	.31	11.0
6826 ²		6.00	1.69	1.63	1/2	.56	2.63	7.19	-	3.88	-	-	.38	15.3
7539 6		4.13	.81	1.13	1/2	.56	1.50	5.78	-	4.72	-	-	.31	21.0

All attachments are thru-hardened. ¹ All holes round and straight.

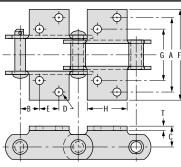
 $^{(2)}$ A1/A2 and K1/K2 attachments are combined on the same side bar.

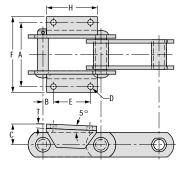

A 1/A 2 and K 1/A 2 addeninents are combined on the same of a line of a l

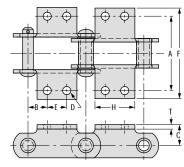
⑦ N ot C entral.


[®] H oles are square

I Now known as ER Series chain. P revious prefix was S, ES or SX.


ENGINEERED STEEL


K2Figure 1


K2Figure 2

K2Figure 3

K2Figure 4

K2Figure 5

		KZ i ige				Dimensions are in inches. Weights are in poun								
Rex Chain No.	Link-Belt Chain No.	A	В	с	D ^G Bolt Dia.	D Bolt Hole	E	F	G	Н	J	к	T	Wgt Per Foot
	I					K2 Figu	re 1							
	RS 658	5.25	1.50	2.50	³ /8	.44	3.00	6.83	_	4.38	_	_	.31	14.9
	RS 886	4.19	.67	.81	5/16	.34	1.25	5.40	-	2.13	-	-	.19	4.6
	RS887	4.19	.67	.88	⁵ /16	.38	1.25	5.10	-	2.13	-	-	.25	5.6
	S 951	4.38	2.00	1.63	3/8	.44	2.00	5.80	-	4.13	-	-	.31	14.3
	\$960	4.38	1.50	1.63	1/2	.56	3.00	6.04	-	4.38	-	-	.50	18.2
	\$996	4.38	1.50	1.63	1/2	.56	3.00	5.72	-	5.50	-	-	.38	15.8
	S1113 RS1114	4.12	1.27	1.25	³ /8 ³ /8	.41	1.50	5.55	-	2.50	-	-	.31	11.0
	RS1114 RS1116	4.00	2.00	1.13 1.13	3/8	.41	2.00	5.69 5.38	_	3.50 2.88	-	-	.31 .25	10.7
	RS1131	6.00	1.69	1.63	1/2	.44	2.63	7.38	_	5.50	_	_	.23	18.4
	RS1539	3.97	.60	1.25	5/16	.34	1.88	5.13	_	2.75	_	_	.30	9.0
	S1796	4.38	1.50	1.63	1/2	.56	3.00	5.73	-	4.38	_	-	.38	15.3
	RS2047	4.38	1.50	1.75	$^{1}/_{2}$.53	3.00	6.70	-	4.38	-	-	.38	32.0
	RS2188	3.62	1.13	1.00	1/2	.56	1.75	5.33	-	3.00	-	-	.31	8.8
	S4013	2.75	1.41	.81	⁵ /16	.34	1.19	3.81	-	2.50	-	-	.19	4.4
	RS4019	2.75	1.25	.88	³ /8	.41	1.50	3.77	-	2.50	-	-	.25	5.3
	RS6018	4.00	2.00	1.25	³ /8	.44	2.00	5.23	-	3.00	-	-	.25	6.2
	RS 6238	4.25	1.69	1.63	¹ / ₂	.56	2.63	5.75	-	5.50	-	-	.38	15.8
						K2 Figu	re 2							
	RS911	5.13	2.75	1.75	1/2	.53	3.50	7.13	-	5.50	-	-	.25	12.7
	SS922	5.75	2.75	2.50	1/2	.53	3.50	7.75	-	5.50	-	-	.25	16.6
	SS927	5.75	2.75	2.50	¹ /2	.53	3.50	7.75	-	5.50	-	-	.25	16.0
	SS933	6.00	2.75	2.88	1/2	.53	3.50	8.82	-	5.50	-	-	.31	22.3
	\$1211 \$\$1222	5.13	3.00	1.75	1/2 1/2	.53	6.00	7.13	-	8.00	-	-	.25	11.7
	SS1222 SS1233	5.75 6.00	3.00 3.00	2.50 2.88	1/2 1/2	.53 .53	6.00 6.00	7.75 8.82	-	8.00 8.00	-	-	.25 .31	15.2 20.3
	331233	0.00	3.00	2.00	12			0.02	_	0.00	_	_	.31	20.3
	SBS844	0.00	4 0 0	4 5 0	1,	K2 Figu		0.00		1.0.0			5.0	
	303844	6.00	1.63	1.50	1/2	.56	2.75	8.00	-	4.00	-	-	.50	14.9
					24	K2 Figu								
	SBS 4871	8.00	1.48	2.00	3/4	.81	6.00	10.44	-	8.00	-	-	.38	20.2
						K2 Figu								
	SBS102B	5.32	1.13	1.00	3/8	.41	1.75	6.76	-	2.85	-	-	.38	9.0
	SBS110	5.32	2.13	1.00	3/8	.41	1.75	7.07	-	2.88	-	-	.38	8.6
	SBS111	6.25	1.22	1.50	¹ / ₂	.53	2.31	8.28	-	3.62	-	-	.38	15.2
	SBS131 SBS150+	4.12	.79 1.65	1.00 1.88	1/2 1/2	.53 .53	1.50 2.75	5.44 10.06	-	2.62 4.25	-	-	.38 .50	10.2
	SBS150+	4.19	.68	.81	⁵ /16	.53	1.25	5.22	-	4.25	-	-	.50	23.0 5.8
	SBX856	6.31	1.88	1.88	1/2	.54	2.25	9.27	_	4.25	_	_	.25	23.0
	ts are thru-har		1.00	1.00	12	.00	L.20	0.27		1.20			.00	20.0

All attachments are thru-hardened.
 ① All holes round and straight.

-①

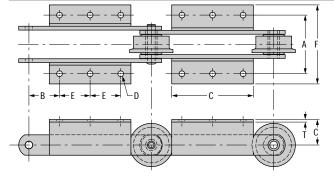
-0

Ð

Æ

(Ŧ)

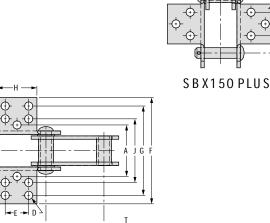
÷


K3LINK-BELT

-\$--\$-

SBX856

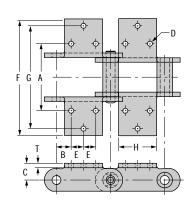
Œ


G.

K3REX

-0 С

K 3 on RS 856 and SX150



Α

В

С

Bolt Dia.

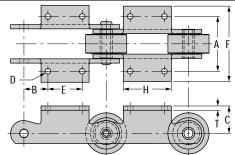
K11 and K17 Dimensions are in inches. Weights are in pounds.

K6

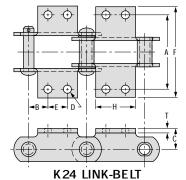
Link-Belt

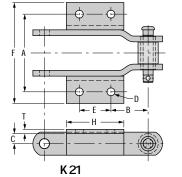
Chain No.

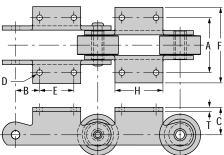
Rex


Chain No.

Wgt. Per Foot **D**1 G Е F н Κ Т J Bolt Hole K3

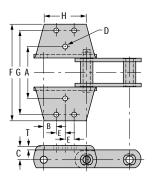

ER150 ³		7.50	1.66	1.88	¹ /2	.56	1.38	13.06	11.50	4.25	-	-	.50	26.2
ER85623		6.56	1.63	1.88	1/2	.56	1.38	13.56	10.94	5.84	-	-	.50	26.9
E1211		5.13	3.00	1.75	1/2	.56	3.00	7.13	-	8.00	-	-	.25	11.7
ER1222		5.75	3.00	2.50	¹ /2	.56	3.00	7.75	-	8.00	-	-	.25	15.4
FR1222		5.75	3.00	2.50	1/2	.56	3.00	7.75	-	8.00	-	-	.25	15.2
ER1233		6.50	3.00	3.00	1/2	.56	3.00	9.00	-	8.00	-	—	.31	20.3
FR1233		6.50	3.00	3.00	¹ /2	.56	3.00	9.00	-	8.00	-	-	.31	20.3
ER1244		7.50	3.00	3.63	1/2	.56	3.00	9.75	-	8.00	-	-	.38	30.4
FR1244		7.50	3.00	3.63	¹ /2	.56	3.00	9.75	-	8.00	-	-	.38	30.4
FR1822		5.75	3.50	2.50	1/2	.56	5.50	7.75	-	14.00	-	-	.25	14.1
FR1844		7.50	3.50	3.63	1/2	.56	5.50	10.69	-	14.00	-	-	.38	29.0
	SBS150+	7.50	1.65	1.88	¹ /2	.56	1.34	13.59	11.50	4.25	-	-	.50	26.9
	SBX856	6.56	1.63	1.88	1/2	.56	1.38	13.27	12.06	4.25	10.98	-	.50	27.3
						K6								
	SBX 856	6.56	1.62	1.88	¹ / ₂	.56	2.76	10.94	10.94	4.25	6.94	-	.50	27.3
						K11								
BR2111		4.75	3.50	1.63	5/8	.69	-	6.88	-	3.00	-	-	.38	9.58
						K17								
531		4.00	2.00	1.31	1/2	.56	-	5.44	-	1.50	-	-	.38	10.6


All attachments are thru-hardened. ^① All holes round and straight.

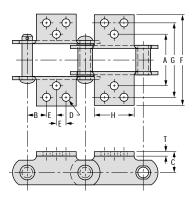

Full width attachment cannot be coupled consecutively.
 N ow known as E R S eries chain. P revious prefix was R S or SX.

K 20, K 22, K 23, K 24 REX, K 25

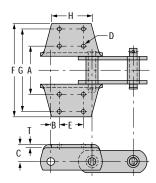
K 26, K 27 and K 32 Dimensions are in inches. Weights are in pounds.

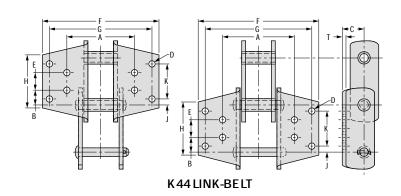

Rex												Wat		
Chain No.	Chain No.	A	В	С	Bolt Dia.	Bolt Hole	E	F	G	н	J	к	Т	Per Foot
					Dort Dia.									
		_		_		K20								
2183		4.00	1.75	2.00	³ /8	.41	2.50	5.69	-	3.50	-	-	.31	13.7
F2183		4.00	1.75	2.00	3/8	.41	2.50	5.69	-	3.50	-	-	.31	14.9
						K21								
R2342		6.75	3.13	1.25	⁵ /8	.69	2.75	8.38	_	5.00	-	-	.38	15.8
			..		, .	K22								
ER102 5 ⁽²⁾⁽⁵⁾		E 21	114	1.13	¹ /2			6.78		1 5 6			20	14.5
ER102.500		5.31 5.31	1.14 1.13	1.13	^{1/2}	.56	1.75	6.94	-	4.56 4.25	-	-	.38 .38	9.0
ER111 ²		6.25	1.13	1.13	1/2	.56	2.31	7.69	_	5.22	-	-	.30	15.2
RR542		5.38	2.13	1.00	1/2	.56	1.75	6.81	_	7.50	_	_	.31	6.5
S188		3.63	.69	.81	⁵ /16	.34	1.25	5.13	-	2.13	-	-	.25	5.8
ES833 ²		5.75	1.25	1.88	1/2	.56	3.50	7.19	-	7.44	-	_	.38	20.2
A2800		5.19	2.38	2.19	⁵ /8	.69	3.25	7.18	-	5.00	-	-	.50	26.2
						K23	3							
ER856205		6.31	1.88	1.88	1/2	.56	2.25	9.50	_	6.91	_	_	.50	21.0
EROSO		0.51	1.00	1.00	12			5.50		0.01			.50	21.0
						K24								
ER85625		7.25	1.75	1.88	⁵ /8	.69	2.50	9.38	-	6.91	-	-	.50	27.5
ER956 ²		7.25	1.75	1.88	5/8	.69	2.50	9.50	-	6.91	-	-	.50	29.0
1670		4.06	2.00	1.38	³ /8	.41	2.00	5.31	-	3.50	-	-	.31	11.2
C2848 ² 3285 ²		5.38 6.50	1.13 1.00	2.00 2.06	⁵ /8 3/4	.69 .81	1.75 2.50	7.13 8.25	-	6.06 7.00	-	-	.38	15.3 23.0
3285 [©] A4539 [©]		4.13	.78	1.13	¹ / ₂	.56	1.50	5.53	-	4.56	-	-	.50 .31	10.0
A4009	SBX 856	7.25	1.75	1.13	⁵ /8	.69	2.50	9.27	_	4.50	-	-	.50	23.0
	3DX 000	1.20	1.73	1.00	78	.09 K25		9.27	-	4.20	_	-	.30	23.0
					1		_							
ER110 ⁵		5.31	2.13	1.13	3/8	.41	1.75	6.44	-	3.50	-	-	.38	8.6
ER131 ⁵		4.13	.78	1.13	$\frac{1}{2}$.56	1.50	5.59	-	2.50	-	-	.38	10.2
ER922 A2124 ³		5.75	3.00	1.63	1/2	.56	3.00	7.56	-	5.00	-	-	.25	14.9
AZ1Z4® A21783		4.88 4.88	1.75 1.75	1.63 1.63	1/2 1/2	.56	2.50 2.50	6.50 6.50	-	4.50 4.50	-	-	.38 .38	16.8 16.3
A2178® A21983		4.88	1.75	1.63	1/2	.56	2.50	6.50	-	4.50	-	-	.38	16.3
AZ150®		4.00	1.75	1.03	•72			0.30	-	4.30	-	_	.30	19.2
						K26								
X3433④		5.31	1.13	1.13	¹ / ₂	.56	1.75	6.94	-	4.25	-	-	.38	11.1
						K27								
ER833 ²⁵		6.00	1.69	1.88	1/2	.56	2.63	6.13	_	7.16	-	_	.38	20.2
		0.00			,-	K32								20.2
D 2022		5.25	00	1.00	3 /-			6.25		275			25	5.0
R2823		5.25	.06	1.00	3/8	.41	1.69	6.25	-	2.75	-	-	.25	5.9

All attachments are thru-hardened. ⁽¹⁾ All holes round and straight. ⁽²⁾ Full width attachment cannot be coupled consecutively.


^③ Lower edge of sidebar is necked.

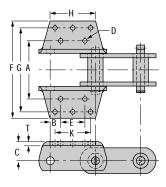
⁽⁴⁾ F ull width attachment on outside only.


⁽⁵⁾ N ow known as E R S eries chain. P revious prefix was S, E S or R S.

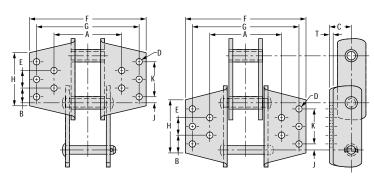

K35REX

K 35 LINK-BELT

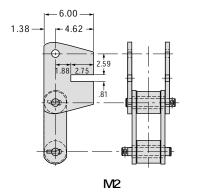
K44 REX

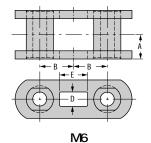

			-	
Dimensions	are in inches.	Weiahts	are in po	unds.

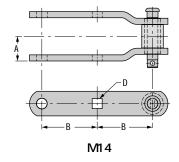
Rex	Link-Belt	А	в	с	D	D	Е	F	G	н		к	т	Wgt
Chain No.	Chain No.	^	D	\$	Bolt Dia.	Bolt Hole	•		U		,	Ň	•	Per Foot
						K3 5								
ER856 ²³		7.25	1.75	1.88	⁵ /8	.69	1.25	13.56	11.75	5.84	-	-	.50	26.9
	SBX856	7.50	1.75	1.88	5/8	.69	1.25	13.27	11.75	4.25	-	-	.50	27.3
						8 HOLES	- K44							
ER857 ²		7.00	1.25	2.50	¹ / ₂	.56	3.50	14.00	12.00	5.50	1.25	3.50	.50	38.0
ER859 ²		9.00	1.63	3.00	5/ ₈	.69	2.75	15.00	13.00	5.92	.75	4.50	.63	59.0
ER958		7.00	1.25	2.50	¹ / ₂	.56	3.50	13.68	12.00	5.75	1.25	3.50	.50	40.0
						K44								
	SBX2857	7.00	1.25	2.50	1/2	.56	3.50	13.50	12.00	5.31	1.25	_	.50	42.0
	SBX2859	9.00	1.63	3.00	⁵ /8	.69	2.75	14.82	13.00	5.87	.75	4.51	.63	59.3


All attachments are thru-hardened. ⁽¹⁾ All holes round and straight. ⁽²⁾ Full width attachment cannot be coupled consecutively. ⁽³⁾ N ow known as E R S eries chain. P revious prefix was R S.

Note: Dimensions are subject to change. Certified dimensions of ordered material are furnished upon request.


ENGINEERED STEEL





K443LINK-BELT

Dimensions are in inches. Weights are in pounds.

Rex	Link-Belt	A	В	с	DC	D①		F	G	н		к т	т	Wgt
Chain No.	Chain No.	A	Б	J	Bolt Dia.	Bolt Hole	E	Г	6	П	J	r.	1	Per Foot
						10 HOLES	- K443							
ER864 ²		9.00	1.63	3.00	⁵ /8	.69	3.75	15.00	13.00	7.00	.75	5.50	.63	55.0
ER984		9.00	1.62	3.00	⁵ /8	.69	3.75	14.88	13.00	7.32	.75	5.50	.62	58.0
						K44:	3							
	SBX 2864	9.00	1.63	3.00	⁵ /8	.69	3.75	15.04	13.00	6.88	.75	5.50	.63	56.7
						M2								
C9856					R efer to	D rawing f	or D imer	isions						
	M6/M06													
270		.88	1.31	_	²¹ / ₃₂	\$ lots	1.28	_	_	_	_	_	_	6.4
1536		1.11	1.53	-	21 /32	S lots	1.28	-	-	-	-	-	-	8.7
7774		.88	1.30	-	²¹ / ₃₂	S lots	1.28	-	-	-	-	-	_	6.8
						M 14	ļ							
1036		1.39	3.00	_	9/ ₁₆ ③	S lots	_	_	_	_	-	-	_	4.7
1039		1.39	4.50	-	⁹ /16 ³	S lots	-	-	-	-	-	-	-	4.2
R2342		2.00	4.50	_	³ /4 ³	S lots	_	-	-	_	-	-	_	9.0
RR2397		1.90	6.00	-	7/83	S lots	-	-	-	-	-	-	-	9.3
R2405		2.00	4.50	-	7/83	S lots	-	-	-	-	-	-	-	9.4
R2614		2.66	6.00	-	1 ¹ /4 ³	S lots	-	-	-	-	-	-	_	23.4

All attachments are thru-hardened. ^① All holes round and straight. ^② Full width attachment on outside only.

^③ H oles are square.

ENGINEERED STEEL DRIVE CHAINS

Designed to give you superior performance, even under the most punishing conditions

Rugged, all-steel Rex[®] and Link-Belt[®] drive chains are built to perform at levels other drive chains can't match. Rexnord began manufacturing drive chain in the late 1800's and has been a leader in drive chain innovation since. Today's chains are a product of over a century of improved product design, testing and application experience. No one else in the industry comes close to our level of expertise.

More built-in features for your money

- Engineered interference fit construction designed to increase chain fatigue life and wear life.
- State-of-the-art heat treatment of all chain components to assure longer chain life. Rexnord has developed most of its own heat treating equipment in-house for better control and to precisely fit the heat treat needs of drive chain pins and bushings.
- Pins, bushings and rollers are manufactured to exact tolerances. Sidebars and sidebar holes are punched using the latest punch press technology to give superior fit and finish.
- Selectively Induction Hardened (SIH) pins, available in many of our drive chains, afford you unmatched toughness and wear resistance. Ideal for tough, shock loaded applications.
- Stocked in the largest network of warehouses in the industry. All backed up with extensive engineering and sales support.

Wear life is directly affected by the hardness and case depth of the wearing components

- Selectively Induction Hardened pins (the pin with the crescent-shaped hardened area) are heat treated only on the portion of the pin that experiences wear.
 The balance of the pin is left in a tough state to withstand shock loading.
- Chain rollers, sidebars and bushings are all heat treated for wear resistance and strength.
- Pins hardened by Rexnord's advanced induction hardening process feature extremely hard wear surfaces and deep case depths as shown below.

Ideal replacement for gearing, multiple strand roller chain, and belt drives

- Requires less precision and expense than gearing center distances are more flexible and adjustable.
- A single strand of Rex or Link-Belt drive chain can frequently replace multiple strand roller chain drives, thus simplifying maintenance. And unlike multiple strand chains, our drive chains run on simple flame-cut sprockets.
- Easily adjustable. The offset link design allows one link at a time to be taken out or inserted. No special connector links are required.
- Lower overhung loads than belt drives due to the elimination of pre-tensioning.

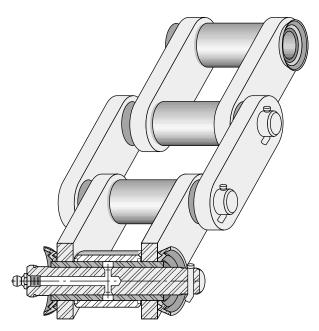

Rexnord chains run best on Rexnord sprockets

Although our drive chains may be run on commonly available flame cut sprockets, they give better long term performance when matched with our sprockets. Our sprockets are flame cut and induction hardened to give hard, deep case depths.

Most competitive sprockets have only a fraction of the case depth. Once the case depth is worn through, sprocket wear is rapid and chain interaction is affected, thus causing greater chain stress.

CIH pins (right and bottom) offer very hard and deep case depths around the full circumference of the pin. SIH pins (upper left) are hardened only on the load bearing surface so shock can be better absorbed by the back of the pin.

> Proprietary induction hardening process gives every heat treated sprocket superior case depths and hardness.


3100 SERIES DRIVE CHAINS

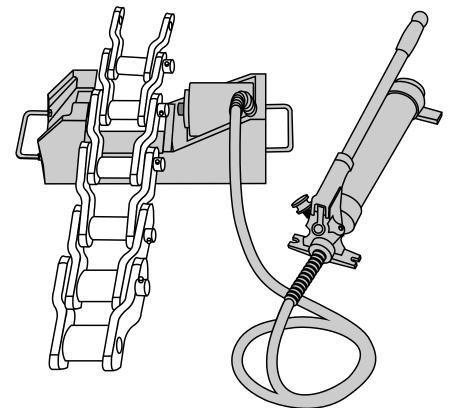
Longer life and durability than their ANSI roller chain equivalents

The 3100 Series drive chains are designed with all the features of our standard drive chains. But, unlike the others, they operate on standard ANSI roller chain sprockets. They may also be used to replace ANSI roller chains of the same pitch.

Sealed Joint Drive Chains

Rexnord engineers have developed a proprietary method of sealing both the roller and bushing area of **straight sidebar** chains. Keeps factory lubrication in and contamination out! Patent pending.

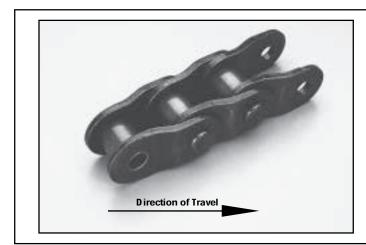
Rexnord has had excellent success with its line of sealed joint elevator chains and is now using that technology to create sealed joint drive chains. Sealed joint drive chains are a new innovation. Please contact Rexnord to determine if this product is right for your application and if the chain you want is available.


- Factory installed grease is trapped in the joint to reduce break-in wear and provide constant lubrication during the life of the seal.
- Contaminants are sealed out to eliminate their abrasive or corrosive effects.

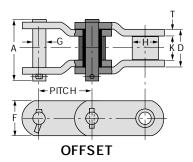
DRIVEMASTER® ASSEMBLY TOOL

The quick and safe way to assemble and disassemble Rex^{\circledast} or $Link\text{-Belt}^{\circledast}$ drive chain

Easily assemble and disassemble our drive chains with this portable tool. An optimum amount of interference fit has been used to assemble this chain at the factory – Drivemaster allows you to maintain this optimum press fit in the field.


- Specify the chain or chains to be assembled and disassembled.
- Each Drivemaster comes with one adapter set to accept the chain or chains you specify when ordering the unit. Different chains require different adapter sets.
- Drivemaster can accept many other Rexnord chains such as welded steel and general engineered class chains. Again, specify the type of chains you anticipate working with.

Easy-to-use Drivemaster assembly tool reduces down-time, maintains interference fit and eliminates cumbersome assembly /disassembly methods.


Application Assistance and Wear Analysis

- Rexnord engineers are always available for drive chain selection and application consultation.
- Rexnord also provides drive chain wear and failure analysis. This service is designed to help you get the most our of your Rex or Link-Belt chains.

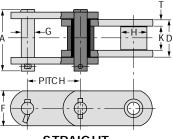
R emember D irection of Travel!

The general rule for direction of chain travel for offset drive chains is as follows: the narrow or roller end of the link in the tight side strand should always face the smaller sprocket, regardless of whether this is a driver or driven.

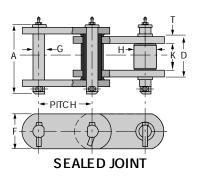
P roperties ΤH Thru-Hardened CARB Carburized CIH Circumferentially Induction Hardened SIH Selectively Induction Hardened

Dimensions are in inches. S trengths, loads and weights are in pounds.

Rex	Link-Belt®	Average	Rated	Minimum	Over-All	Bushing [®]	Sideb	ars	Pins	Roller ®	Between	Average	Sprocket [©]
Chain No.	Chain No.	Pitch	Working	Ultimate Strength,	Width	Length	Thickness	Height	Diam. Properties	Diameter	Sidebars	Weight	Unit
	ondiri No.	1 I Can	Load ²	Lbs. $\times 10^3$	Α	D	Т	F	G	н	K	Per Foot	No.
					Offs	et Sideba	r Drive Ch	ains					
R 362	R0A620	1.654	1,650	14	2.03	1.25	0.13	1.13	0.38-CARB	0.88	0.97	2.0	62
R432	R0622	1.654	2,100	19	2.28	1.38	0.19	1.13	0.44-TH	0.88	0.97	3.5	62
R3112	-	2.000	3,400	38	2.91	1.75	0.25	1.63	0.56-TH	1.13	1.22	6.4	3112
B3113	R0A3160S	2.000	3,900	44	3.13	1.88	0.31	1.63	0.59-TH	1.13	1.19	7.3	3112
R 506	R0770	2.300	1,600	10	2.09	1.25	0.16	1.00	0.38-CARB	0.75	0.88	2.2	506
R514	R0A2010	2.500	4,650	57	3.50	2.13	0.31	1.63	0.63-SIH	1.25	1.44	7.8	514
A520	-	2.563	2,700	24	2.69	1.56	0.25	1.25	0.50-CARB	1.13	1.00	4.5	520
B578	R0578 ²	2.609	1,800	10	2.27	1.38	0.16	1.00	0.38-CARB	0.88	1.03	2.3	78
R778	R0A881	2.609	2,300	18	2.41	1.50	0.19	1.13	0.44-CARB	0.88	1.06	2.3	78
R 588	R0A882	2.609	2,450	19	2.67	1.63	0.25	1.13	0.44-CARB	0.88	1.06	3.8	78
B508H	-	2.620	2,400	19	2.63	1.56	0.25	1.13	0.44-CARB	1.00	1.06	3.8	508
AX1568	ROA2512	3.067	6,000	77	3.90	2.31	0.38	2.25	0.75-SIH	1.63	1.50	12.1	1568
1030	ROA40	3.075	4,650	27	3.50	2.13	0.31	1.50	0.63-CARB	1.25	1.44	6.8	1030
R1033	R0A1031	3.075	4,650	39	3.50	2.13	0.31	1.50	0.63-SIH	1.25	1.44	6.8	1030
R1035	R0A1032	3.075	4,650	52	3.50	2.13	0.31	1.63	0.63-SIH	1.25	1.44	7.2	1030
R1037	ROA40 Hyper	3.075	5,100	57	3.75	2.25	0.38	1.75	0.65-SIH	1.25	1.44	8.6	1030
Champ. 3	-	3.075	5,100	57	3.85	2.25	0.38	1.69	0.65-SIH	1.25	1.44	8.3	1030
R0-6706	-	3.075	9,000	60	4.55	2.94	0.38	2.00	0.88-C IH	1.75	2.19	14.0	R06706
3125	ROA3125 Hyper	3.125	6,600	84	4.00	2.38	0.38	2.25	0.80-S IH	1.63	1.56	12.3	3125
3125-2	ROA3125-2 Hyper	3.125	13,200	168	7.19	2.38	0.38	2.25	0.80-TH	1.63	1.56	24.6	D31
RX238	ROA2814	3.500	7,600	106	4.50	2.50	0.50	2.25	0.88-SIH	1.75	1.44	15.8	238
AX1338	-	3.625	9,200	124	4.98	2.81	0.56	2.50	0.94-SIH	2.13	1.63	20.6	AX1338
R0-6214	-	4.000	16,400	125	5.68	3.75	0.50	2.75	1.25-SIH	2.25	2.75	25.0	R06214
A1236	-	4.063	6,000	73	3.91	2.31	0.38	2.00	0.75-SIH	1.75	1.56	10.4	A1236
1240	ROA124	4.063	9,000	51	4.88	2.94	0.50	2.00	0.88-SIH	1.75	1.88	12.3	1240
1244	-	4.063	9,000	91	4.88	2.94	0.50	2.13	0.88-SIH	1.75	1.88	13.0	1240
R1248	ROA1242	4.063	9,000	102	4.88	2.94	0.50	2.25	0.88-SIH	1.75	1.88	15.7	1240
RX1245	R0A3315	4.073	10,000	124	5.19	3.06	0.56	2.38	0.94-SIH	1.78	1.88	18.7	1240
X1343 X1345	-	4.090	10,700	137	5.25	3.06	0.56	2.75	1.00-SIH	1.88	1.88	21.5	X1343
X1345	-	4.090	10,700	137 166	5.25 5.38	3.06	0.56	2.75 2.75	1.00-TH 1.13-SIH	2.00 2.25	1.88 2.00	22.8 24.8	X1345 X1351
R0635	- ROA3618		12,300	171	5.38	3.19	0.56	3.00	1.10-CIH	2.25	2.00	24.0	635
A1204	-		13,500	169	5.63	3.44	0.56	3.00	1.13-TH	2.25	2.00	25.5	1204
R01205	_		16,400	196	5.93	3.44	0.56	3.00	1.25-CIH	2.50	2.25	25.5	1204
RX1205	- R0A4020		17,500	223	6.31	4.00	0.63	3.50	1.25-SIH	2.50	2.69	34.0	1207
R01315	R0A5035	5.000	20,000	250	6.63	4.00	0.03	3.50	1.38-CIH	2.50	2.50	37.0	R01315
R01355	-	5.000	20,400	250	6.81	4.25	0.75	3.75	1.38-CIH	2.75	2.69	43.6	R01355
R01356	R05542	5.500	23,600	300	7.25	4.50	0.75	4.00	1.50-CIH	3.00	2.94	45.6	R01356
1301	ROA57380		23,000	299	7.09	4.38	0.69	4.00	1.50-TH	3.00	2.94	45.0	1301
R01306/	ROA4824/												
ROS1306®	R0B4824	6.000	23,600	287	7.25	4.50	0.75	4.00	1.50-CIH	3.00	2.94	45.0	1306
RX9506H	-	6.000	23,600	300	7.25	4.50	0.75	4.75	1.50-SIH	3.00	2.94	47.2	1306
X1311	R06555 ²	6,500	30,600	412	7.97	5.00	0.88	5.00	1.75-SIH	3.50	3.19	77.9	X1311
X1307	-		30,600	385	7.97	5.00	0.88	5.00	1.75-SIH	3.50	3.19	66.0	1307
	rsions no longor avail												


^① Link-Belt versions no longer available. Unless otherwise noted, Rex version is identical to the Link-Belt version. Sections and links may be interchanged.

[©] Use pages 103-108 for drive chain selection procedures using selection tables. For alternate selection method using 'rated working load,' see page 122. ^③ All bushings are carburized except for RO1315, RO1355, RO1356, ROS1306, & RX95506H, which are thru-hardened.


⁽⁴⁾ All sidebars are thru-hardened except for R506, B578, 1030, 1240.

 $\begin{tabular}{l} \begin{tabular}{c} \begin{tabu$

[©] Fabricated steel sprockets are recommended.

STRAIGHT

P roperties

TH	Thru-Hardened
CARB	Carburized
CIH	Circumferentially Induction Hardened
SIH	Selectively Induction Hardened

Dimensions are in inches. S trengths, loads and weights are in pounds.

		-											
Rex	Link-Belt ^①	Average	Rated	Minimum	Over-All	Bushing ³	Sideb	ars [@]	Pins	Roller [©]	Between	Average	Sprocket [©]
Chain No.	Chain No.	Pitch	Working	Ultimate Strength,	Width	Length	Thickness	Height	Diam. Properties	Diameter	Sidebars	Weight	Unit
	onani no.	1	Load ²	Lbs. $\times 10^3$	Α		Н	K	Per Foot	No.			
					Strai	g ht Sideb	ar Drive C	hains					
6425R	-	2.500	6,900	78	3.81	2.27	0.38	2.38	0.88-CIH	1.56	1.48	12.7	645
X345	RS 3017 [®]	3.000	10,000	124	5.22	3.06	0.56	2.38	0.94-SIH	1.78	1.88	21.8	X345
X1353	-	4.090	16,000	205	5.81	3.50	0.63	3.00®	1.31-SIH	2.63	2.18	32.6	X1353
X1365	-	6.000	30,600	407	7.97	5.00	0.88	5.00	1.75-SIH	3.50	3.19	68.0	X1365
A1309	R07080 [®]	7.000	37,150	606	8.00	5.00	0.88	6.00	2.13-TH	4.50	3.13	89.6	A1309
					3100 S	eries Offs	et Sidebar	^r Chains					
3120CM	R0A3120	1.500	2,100	28	2.28	1.38	0.19	1.81	0.44-TH	0.88	0.97	4.0	ANSI #120
3140CM	ROA3140	1.750	2,500	39	2.50	1.44	0.22	1.63	0.50-TH	1.00	0.97	5.2	ANSI #140
3160CM	ROA3160	2.000	3,450	50	2.91	1.75	0.25	1.88	0.56-TH	1.13	1.19	6.7	ANSI #160
3180	-	2.250	4,800	63	3.31	2.00	0.28	2.13	0.69-C IH	1.41	1.38	9.6	ANSI #180
					Se	aled Join	Drive Cha	ains					
SJLR1037	-	3.075	5,100	57	4.37	2.56	0.38	1.88	0.65-SIH	1.25	1.44	9.1	1030
SJLR1245	-	4.073	10,000	124	5.78	3.38	0.56	2.38	0.94-SIH	1.78	1.88	19.0	1240

^① Link-Belt versions no longer available. Unless otherwise noted, Rex version is identical to the Link-Belt version. Sections and links may be interchanged.

Unix-Bett versions no longer available. Unless otherwise noted, Rev version is identical to the Link-Bett version. Sections and links may be interchanged.
 Use pages 103-108 for drive chain selection procedures using selection tables. For alternate selection method using 'rated working load', see page 122.
 All bushings are carburized except for R01315, R01355, R01356, R0S1306, & RX95506H, which are thru-hardened.
 All sidebars are thru-hardened except for R506, B 578, 1030, 1240.
 All rollers are thru-hardened.

⁽⁶⁾ Fabricated steel sprockets are recommended.

⁽⁷⁾ Functional equivalent, but not physicall identical to, Rex equivalent shown.

Inner sidebars 3.50

INDUSTRY'S HIGH PERFORMANCE WELDED STEEL CHAINS

Rex[®] Welded Steel chains are the material handling industry's choice for the most demanding applications. Our customers know that Rex chains provide superior strength and durability for extended wear life and trouble free service.

Rexnord Corporation, manufacturers of Rex chain for over 100 years, is the leader in the chain industry. Our years of experience provide unique expertise in material selection, heat treatment and chain design for improved chain strength and long wear life. What this means to you is superior value and greater productivity.

THE REX WELDED STEEL STORY

A lot goes into a Rex chain that is not visible on the surface. The precision of a diameter or the case depth of an induction hardened part can only be realized after an in-depth analysis. Rexnord regularly tests Rex and competitive chains and it is clear, all welded chains are not created equally. What follows is the story of how we make Rex welded steel chains to be the best anywhere in the world!

Maximizing Chain Wear Life Through Superior Heat Treatments

Chain wear life is directly affected by the hardness of the wearing components. Quite simply, the harder the parts, the longer the wear life. Rexnord's heat treatment technology exceeds that of other chain manufacturers.

Computer controlled furnaces, and Rexnord designed induction heat treating equipment, produce chain components with the industry's hardest possible wearing surfaces and yet still provide the necessary toughness to resist shock loads. In addition, unique Rexnord process controls provide chains with consistent wear life. This allows users to predict the wear life of their chains, allowing for chain replacement as part of their preventative maintenance programs. In the end, superior chain eliminates costly and unexpected down time.

All Rex welded steel chains come standard with "premium" heat treatments. The photo (top right) shows a cross section of a Selectively Induction Hardened (SIH) chain pin. This exclusive Rexnord process involves super hardening only the portion of the chain rivet that wears as the chain articulates over the sprockets. The remainder of the rivet is

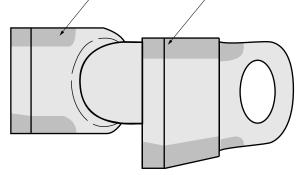
A cross section of a selectively induction hardened WHX pin – the crescent area is super-hardened to dramatically lengthen pin wear life. The balance of the pin material is left in the thru-hardened condition to give the pin excellent toughness.

held at thru-hardening levels to assure chain toughness and resistance to breakage. This treatment is standard on WHX Narrow Mill chains. Other manufacturers of welded chain compromise their design, either sacrificing component hardness or resistance to overloads.

Rex Wide Mill heat treated chains (WDH) come standard with thru-hardened rivets, sidebars and barrels. Other manufactures short-change wear life by not hardening the barrels - significantly reducing chain wear life. Only Rex Wide Mill chains have thru-hardened barrels!

The table below illustrates the importance of superior heat treatment. By using the table, one can predict the increase in wear life by upgrading the heat treatment. As an example, increasing hardness from 35RC to 60RC could provide up to double the chain life!

Importance of Heat Treatment


Heat Treatment	Not Hardened	Thru- Hardened	Induction Hardened
Hardness RC (typ)	20	35	60
Relative Wear Life*	1	2	4

*Dry operating conditions

Maximizing Chain Wear Life - (Cont'd.)

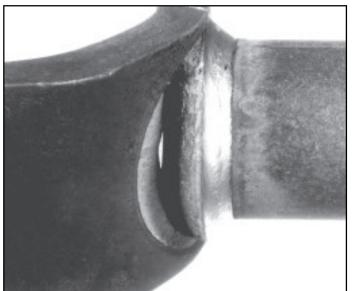
The Rexnord story continues with a variety of heat treating options to further extend wear life and increase your plant's productivity. The graphic below represents a chain link with Selectively Induction Hardened (SIH) sidebars. This process can be applied to chain links to greatly improve sliding wear. If you regularly replace chains due to sidebar wear, you should select SIH sidebars. This is a very cost effective way to increase your chain life.

Selectively Induction Hardened Sliding Surfaces

Selectively Induction Hardened sidebars can be ordered to give greater resistance to abrasive sliding wear, thus providing greater sidebar life.

To extend wear life in especially corrosive applications, Rex welded steel chains can be provided with a variety of plating options or with stainless steel components. Contact Rexnord for application assistance. Let us put 100 years of experience to work for you!

MAXIMIZING CHAIN STRENGTH

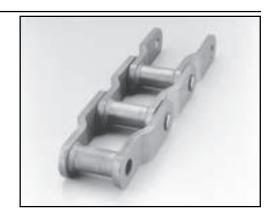

A key factor leading to the durability of Rex welded steel chains is superior fatigue strength.

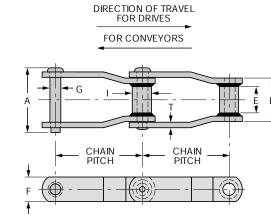
Rex Narrow Series welded steel chains have tightly controlled, interference fits between the pin and chain sidebar hole. This interference fit creates a beneficial residual stress in the sidebar to greatly increase the fatigue life of the chain. The chains have a "stepped" (3 diameter) pin to ease assembly and protect the integrity of the interference fit.

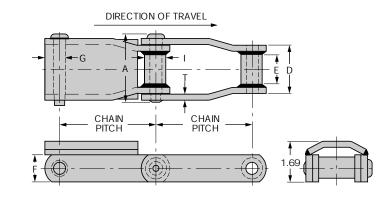
Competitive chains with poorly controlled interference fits (or with clearance fits!) have much lower fatigue strength. Low fatigue strength chains are subject to unexpected chain failures after a chain sees many cycles of loading.

Another key factor in providing maximum chain strength is proper welding, stress relieving, and heat treatment. Improper controls and processes can lead to failures around the weld either from improper weld penetration or by causing high hardness zones that result in brittle failures. Rexnord uses the latest technology in process and quality controls to assure proper weldments.

Rex welded links are regularly tested during each manufacturing lot to assure our process is in control, producing high quality welds. The photo below shows a welded steel link that has been destructively tested to assure the strength and penetration of the weld. As demonstrated in the photo, the chain material failed first, not the weld. This demonstrates a high quality weld.


Rexnord's quality assurance program requires welded steel links to be tested for weld strength and penetration.


MAXIMIZING PLANT PRODUCTIVITY


Rexnord Corporation brings many years of application and design experience with it to your plant in the form of chain, bearings and other fine power transmission components. Our sales people and application engineers are eager to work with your organization to maximize the productivity of your plant. Please call us for any assistance we might offer. We look forward to working with you.

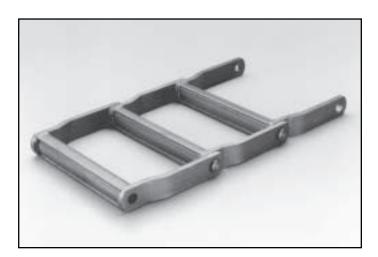
NARROW SERIES WR, WH, WHX AND WSX

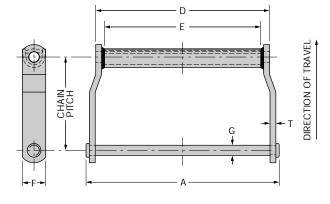
- WR chains have only thru-hardened rivets. •
- WH chains have all parts thru-hardened. •
- WHX chains have thru-hardened parts and selectively induction • hardened rivets as standard.
- WSX chains have all stainless steel construction. Sidebars are ٠ 300 series; pins and barrels are precipitation hardened stainless.
- Riveted construction is standard. Pin and cottered construction ٠ can be furnished on a made-to-order basis.

NARROWSERIES

NELDED STEEL CHAINS

	Dimensions are in inches. S trengths, loads and weights are in pounds.											
				Sideb	oars	Pins	B	arrel	Minimum	Rated	Average	
Rex Chain No.	Average Pitch	Α	E	Thickness	Height	G	D	I	Ultimate Strength,	Working Load	Weight Per Foot	Sprocket Unit [®] No.
				T	F				Lbs. x 10 ³	Luau	rei i ool	
WR78	2.609	2.98	1.12	0.25	1.13	0.50	2.00	0.88	21,000	3,000	4	78
WH78	2.609	2.98	1.12	0.25	1.13	0.50	2.00	0.88	25,500	3,500	4	78
WHT78	2.609	2.98	1.12	0.25	1.13	0.50	2.00	0.88	25,500	3,500	6	78
WH82	3.075	3.25	1.25	0.25	1.25	0.56	2.25	1.22	29,500	4,400	6	103
WH9103HD	3.075	3.81	1.25	0.38	1.50	0.75	2.28	1.25	51,000	6,000	8	103
WH784	4.000	2.98	1.12	0.25	1.13	0.50	2.00	0.88	24,000	3,500	3	130
WHT130/138	4.000	2.98	1.12	0.25	1.13	0.50	2.00	0.88	24,000	3,500	6	130
WHX124	4.000	4.18	1.63	0.38	1.50	0.75	2.81	1.44	50,500	7,350	9	H124
WHX124HD	4.063	4.82	1.63	0.50	2.00	0.88	3.00	1.63	80,000	9,150	14	H124
WSX124	4.000	4.35	2.01	0.38	1.50	0.75	2.81	1.44	Consult	Rexnord	14	H124
WHX111	4.760	4.79	2.25	0.38	1.50	0.75	3.38	1.44	50,500	8,850	8	111
WH720CS	6.000	3.61	1.12	0.31	1.56	0.75	2.16	1.44	54,000	5,700	6	CS720S
WHX106	6.000	4.18	1.63	0.38	1.50	0.75	2.81	1.44	50,500	7,350	7	106
WHX106SHD	6.000	4.78	1.50	0.50	2.00	0.88	3.00	1.63	82,000	9,150	12	106
WHX106XHD	6.050	4.87	1.63	0.50	2.00	1.00	3.00	1.75	Consult	Rexnord	13	106
WH110	6.000	4.57	1.88	0.38	1.50	0.75	3.00	1.25	50,500	7,900	7	110
WHX132	6.050	6.31	3.00	0.50	2.00	1.00	4.38	1.75	85,000	15,000	14	132
WSX132	6.050	6.25	3.00	0.50	2.00	1.00	4.38	1.75	Consult	Rexnord	14	132
WHX150	6.050	6.31	3.00	0.50	2.50	1.00	4.38	1.75	90,000	15,000	16	132
WHX155	6.050	6.48	2.75	0.56	2.50	1.13	4.38	1.75	102,000	17,500	19	132
WHX157	6.050	6.68	2.75	0.63	2.50	1.13	4.63	1.75	117,000	18,200	20	132
WHX2855	6.050	6.57	2.75	0.63	2.50	1.25	4.63	1.75	1 40,000	20,250	20	132
WHX 3855	6.050	6.57	2.75	0.63	3.00	1.25	4.63	1.75	175,000	20,250	22	132
WHX159	6.125	6.87	2.88	0.63	3.00	1.25	4.63	2.00	204,000	20,250	27	132
WHX 4855	12.000	6.57	2.75	0.63	2.50	1.25	4.63	1.75	119,000	20,250	15	4855


^① Cast or fabricated sprockets may be used.


WIDE SERIES – WD, WDH

Rex[®] Wide Series chains are furnished standard with heat-treated rivets only (WD Series) or all components heat-treated (WDH Series). WDH Series chains are intended for use in applications where joint wear, barrel OD wear, and sidebar wear are a problem.

- WD Series have thru-hardened rivets.
- WDH Series have all parts thru-hardened.
- Riveted construction is standard. Pin and cottered construction can be furnished on a made-to-order basis.
- Lube holes drilled into barrels is an MTO option.
- Induction hardened pins are an MTO option.
- Galvanized pins are an MTO option.

→ Rexnord has found that some competitive wide mill drag chains use a low carbon steel for their barrels. A low carbon steel will not respond to heat treatment even though it may be put in a furnace and attempted to be heat treated. Rex Welded Steel chains use medium carbon steel barrels that respond very well to heat treatment and provide twice the wear resistance of these low carbon barrels. Harder components, longer life!

Rex Wide Series Chains are specially designed for loads and operating conditions imposed by drag conveyor service. As with our Narrow Series, many material and configuration options are available.

R Chai	ex n No.	Average Pitch	A	E	Sideb Thickness	ars Height	Pins	Barrel Length	Stre	nate	Ra Wor Lo	king ad	Average Weight	Sprocket [®] Unit
WD Series	WDH Series	rian			T	F	G	D	WD Series	WDH Series	WD Series	WDH Series	Per Foot	No.
WD102	WDH102	5.000	9.13	6.50	0.38	1.50	0.75	7.75	38, 300	55,000	8,500	10,000	11	H102
WD104	WDH104	6.000	6.75	4.13	0.38	1.50	0.75	5.38	38,300	55,000	8,500	10,000	9	H104
WD110	WDH110	6.000	11.8	9.00	0.38	1.50	0.75	10.38	38, 300	55,000	8,500	10,000	12	H110
WD113	WDH113	6.000	12.5	9.00	0.50	1.50	0.88	10.63	48,000	57,000	9,300	11,700	18	H110
WD120	WDH120	6.000	12.1	8.75	0.50	2.00	0.88	10.25	70,000	79,000	12,300	15,000	20	H120
WD112	WDH112	8.000	11.8	9.00	0.38	1.50	0.75	10.38	38, 300	55,000	8,500	10,000	10	H112
WD116	WDH116	8.000	15.5	13.0	0.38	1.75	0.75	14.13	55,000	59,000	10,700	11,500	13	H116
WD118	WDH118	8.000	16.8	13.3	0.50	2.00	0.88	14.88	70,000	79,000	12,300	15,000	21	WD1182
WD 480	WDH 480	8.000	14.6	11.2	0.50	2.00	0.88	12.75	70,000	79,000	12,300	15,000	18	H480
	WDH580	8.000	14.6	11.2	0.50	2.00	1.00	12.75	-	108,000	-	20,500	18	H480
	WDH680	8.000	15.33	11.2	0.63	2.00	1.00	13.00	-	108,000	_	20,500	21	H480

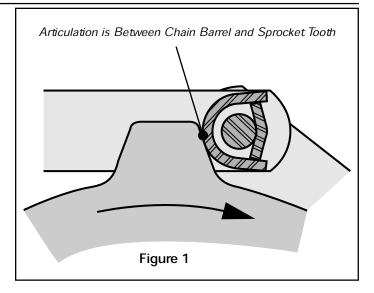
Dimensions are in inches. S trengths, loads and weights are in pounds.

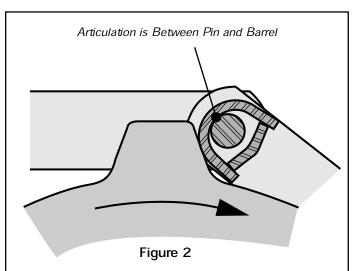
 $^{\textcircled{0}}$ Cast or fabricated steel sprockets may be used except as noted.

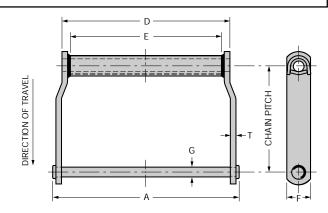
⁽²⁾ Available as a fabricated steel sprocket only.

NEW! REVERSE BARREL WIDE MILL DRAG CHAINS

A simple and effective solution for an old problem.


The Problem: Since their introduction, wide mill welded steel chains were designed to run "narrow" or "closed end" forward. This is the direction of travel that the chains on the preceding page run. Running in this direction, an offset sidebar chain will experience scrubbing between the outside of the chain's barrel and the drive sprocket's tooth (Figure 1). On shorter conveyors, where the chain contacts the sprocket very frequently, this scrubbing can cause rapid wear of both the chain and sprocket. This scrubbing may not cause as much chain wear on longer conveyors but it will still cause sprocket wear.


The Solution: Rexnord engineers realized that if they reversed the barrel of the chain so it could run in the opposite direction, "wide" or "open end" forward, the scrubbing action could be eliminated. Instead of the articulation occurring between the outside of the chain barrel and the sprocket tooth it occurs inside the chain joint between the pin and the barrel (Figure 2). This arrangement is preferable since both the pin and the barrel of the wide mill chains are heat treated to withstand this type of wear.

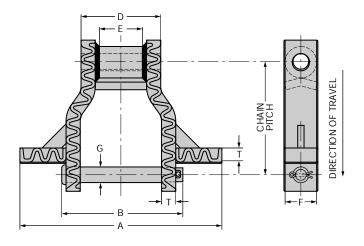

How do I Know if I Need Reverse Barrel Chain?

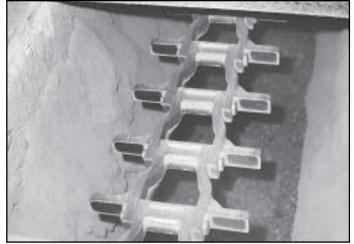
Note the difference in position of the pin within the barrel in Figures 1 and 2. When running narrow end forward and the engaged pin is being pulled forward at the time of engagement and the pin of the previous link is being pulled against the front of the barrel.

When reverse barrel chain is run wide end forward (Figure 2), the sprocket is pushing against the force applied. This may extend the useful life of chains used in long and/or heavy loaded applications where the typical mode of chain failure is breaking at the barrel welds.

Dimensions are in inches. S	S trengths, loads and	weights are in pounds.
-----------------------------	-----------------------	------------------------

	Rex	Average			Sideb	ars	Pins	Barrel Length	Minimum Ultimate	Rated	Average Weight	Sprocket Unit
	Chain No.	Pitch	A	E	Thickness	Height	c	n	Strength,	Working Load	Per Foot	No.
					T	F	6	U	Lbs. x 10 ³	LUdu		
Ī	WDH2210	6136	11.9	9.00	0.38	1.50	0.75	10.38	55,000	10,000	11.5	H110
	WDH2316	8.126	15.8	13.00	0.38	1.75	0.75	14.13	55,000	11,500	13	H116
	WDH2380	8161	14.6	11.25	0.50	200	0.88	1275	79,000	15,000	18	H480


Other chains available on a made to order basis. Contact Rexnord.


HEAVY DUTY WELDED STEEL DRAG CHAINS

Rex[®] Heavy Duty drag chains are ideal for conditions where severe abrasion and heat exist. They offer these important features and benefits:

- *Hardface welding* on both of the chain's sliding surfaces is standard. A typical weld hardness of 60 RC and a heavy weld bead give this chain excellent sliding wear resistance in cold and hot clinker applications.
- *Interference fits* between the pin and chain sidebar dramatically improves chain strength and joint wear life over that of a cast drag chain. In addition, no loose pins to move around in the chain joint.

- *An induction hardened pin* affords the best of two worlds a 60 RC typical hardened case and impact resistant material in the core of the pin. The result is longer service life and good resistance to shock loads.
- *Square edges on the wing and sidebar* of welded drag chain convey more efficiently than rounded cast chain edges. They also move a deeper bed of material with each revolution of the chain.
- *Heat treated and fabricated steel components* eliminate the failures that cast chains experience from casting porosity and inclusions.

WHX Drag Chains offer solutions to wear and breakage problems common with cast chains. Fabricated steel construction with heat treated pins, barrels, face plates, wings, and sidebars provide added protection not found in cast chain designs.

SIH Selectively Induction Hardened	TH Thru-Hardened CIH Circumferentially Induction Hardene SIH Selectively Induction Hardened
------------------------------------	---

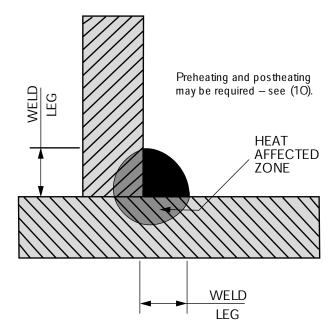
Dimensions are in inches. S trengths, loads and weights are in pounds.

			Sidebars		Pins		Barrel Length		Mnimum	Rated	Sprocket		
Rex Chain No.	Average Pitch	А	Thickness Height Heat		в	G	Heat	D	E	Ultimate Strength,	Working	Unit	
			Т	F	Treat	Б	G	Treat		E	Lbs. x 10 ³	Load	No.
WHX5157	6.050	8 to 14 inches 2 inch increments	0.63	25	TH	694	1.13	S⊪	4.63	275	117,000	18,200	5157 [®]
WHX 6067	9.000	10 to 26 inches 2 inch increments	0.75	25	TH	819	1.25	С⊪	5.5	3.63	195,000	24,300	6121®
WHX5121 ^①	9.000	10 to 30 inches 2 inch increments	1.13	25	TH	9.75	1.25	C⊪	6.31	3.63	205,000	27,600	6121®
WHX6121	9.000	10 to 30 inches 2 inch increments	1.13	25	TH	9.75	1.25	Сℍ	6.31	3.63	205,000	27,600	6121 [©]

 $^{\odot}$ WHX5121 is dimensionally the same as WHX6121 except it runs closed end forward.

^② Octagonal tail wheels are available. The octagonal design reduces the scrubbing which reduces traditional tail sprocket life. See page 108.

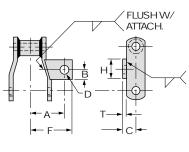
ATTACHMENT WELDING INSTRUCTIONS

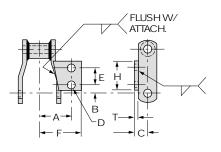

- **1** Surfaces to be welded should be clean and free of foreign material. It is not necessary to remove the pre-lubricant before welding, however, proper ventilation is mandatory.
- 2 Weld strength should be sufficiently high to cause failure of the parent metal and not of the weld itself.
- 3 Welds should be free of cracks, undercutting, slag, inclusions, and excessive porosity. Craters due to stop welding should be located away from corners and edges; most craters contain slight cracks which can initiate failures at high stress areas.
- Weld beads should be free of pinholes, have uniformly fine surface ripples, and have little or no indication of where a new piece of filler metal was started.
- **5** Weld edges should indicate complete fusion without overlap or undercut.
- **6** Welds should be clean, free of spatter, slag, excessive oxides, and arc scars.
- Arcs should be struck on attachments, not on the sidebars. Arc scars on sidebars can produce early chain failure.
- Convex shaped weld beads are preferred. Convex fillet welds are strong and less subject to cracking than concave forms.
- Electrode selection is very important. An electrode that has been successfully used is E7018 (70,000 psi tensile strength, low hydrogen). This rod is for all position use, AC or DC. Good welding practice dictates that electrodes be stored in a dry atmosphere or baked prior to use. Specific electrode manufacturer recommendations should be closely followed.
- Preheating and Postheating Heat applied to the weld heat affected zone is always beneficial. These processes, while not generally required for small attachments, are recommended for large or heavily loaded attachments such as Styles "A" & "C" log cradles. No welding should be performed on parts below 70°F.

Heating is usually done by use of a neutral flame to heat the parts prior to or after welding.

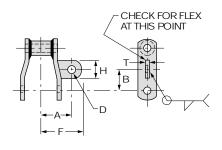
Preheat: Performed to reduce possibility of weld cracking both surface and subsurface. Parts to be welded – link and attachment – should be heated uniformly to 300°F.

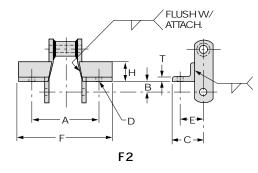
Postheat: Performed to relieve internal stresses and to reduce weld zone hardness. Heat affected zone of weld heated to 700°F.

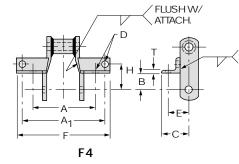

Tack welds should never be used in areas that will not be welded in the finished product.

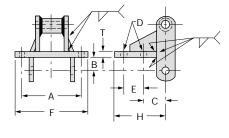

CAUTION

No welding should be performed on or immediately adjacent to an induction hardened or carburized part. Welding to an induction hardened part can produce tempering and softening of this hard surface. Welding attachments to the carbon rich surface of a carburized part will result in brittle welds and possible cracking.

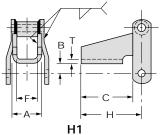

■ WELDED STEEL CHAINS – Attachments

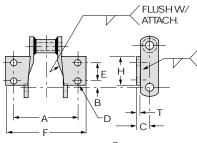

A1



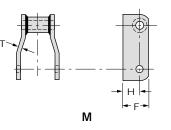

A2, A25²

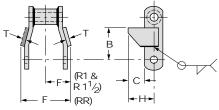
A22

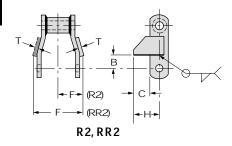


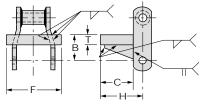

F 26, F 28

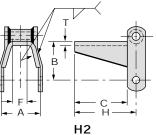
					Dimension	s are in	inches	. Weigh	ts are in	pounds
Chain	A	в	С	0)()	Е	F	н	т	Average Weight
Number		Б	U	BoltDia.	Bolt Hole		•		•	per Ft
					A1					
WH78	200	1.25	0.81	3/8	.41	-	250	1.25	0.25	5
WH82	209	1.50	0.88	3/8	.41	-	275	1.75	0.25	6
				A2	& A25 ²					
WH78	200	Q41	081	3/8	.41	1.13	250	200	0.25	5
WH82	213	Q75	088	3/8	.41	1.31	269	2.25	0.25	7
WHX124	263	088	1.13	3/8	.41	1.94	319	300	0.38	10
WHX124HD	263	Q94	1.50	1/2	.56	1.94	319	306	0.50	16
WHX111	313	1.22	1.13	1/2	.56	231	375	350	0.38	10
WHX132 ²	375	1.63	1.50	1/2	.56	275	4.59	4.25	0.50	16
WHX150	375	1.63	1.75	¹ /2	.56	275	4.59	4.19	0.50	19
WHX155	375	1.63	1.81	$\frac{1}{2}$.56	275	4.59	4.19	0.56	22
WHX157 WHX159	4.00	1.75	1.88	$\frac{1}{2}$.56	250	4.78	4.00	063	22
WHX139	4.00	1.69	213	¹ /2	.56	275	4.78	4.25	063	30
					A22					
WH78	1.88	1.31	-	3/8	.41	-	250	1.00	0.38	5
					F2					
WH78	375	0.56	231	3/8	.41	1.44	4.69	1.25	0.25	6
					F4					
WH78	3753	0.69	231	3/8	.41	1.75	5.50	1.94	0.25	8
WH82	4.133	Q81	238	3/8	.41	1.81	5.94	1.94	0.25	9
WHX124	4.383	088	306	3/8	.41	206	619	230	0.38	12
			_		F 26				_	
WH720CS	375	300	238	3/8	.41	263	500	678	0.25	8
		200		. ,	F 28	100	2.00	2.0	0.20	
WH720CS	375	300	238	3/8	.41	4.50	500	897	0.25	9
^① All holes rou ^② A25 attach										

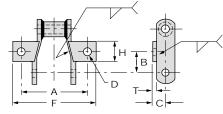

A 25 attachment is for WHX132.
 A 1 is 4.50 for WH78, 5.00 for WH82 and 5.25 for WHX124.


WELDED STEEL CHAINS - Attachments

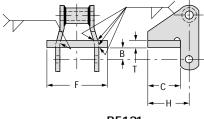



K 2, K 25²

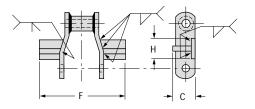



R1, R1¹/2, RR

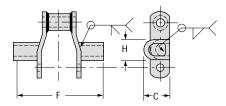
H2		K1 Dimensions are in inches. Weights are in pounds.										
Chain Number	A	В	С) ^① Bolt Hole	E	F	H	T	Average Weight per Ft		
					H1							
WH78	1.75	0.50	306	-	-	-	0.88	363	0.25	8		
WH82	200	063	300	-	-	-	1.13	363	0.25	10		
					H2							
WH78	294	238	300	-	-	-	1.00	356	0.25	8		
WH82	256	269	300	-	-	-	1.00	363	0.25	9		
					K1							
WH78	4.00	1.25	Q81	3/8	.41	-	500	1.25	0.25	6		
WH82	4.19	1.50	0.88	3/8	.41	-	550	1.75	0.25	7		
				K2	& K25 ^②							
WH78	4.00	0.41	0.81	3/8	.41	1.13	500	200	0.25	6		
WH82	4.25	Q75	0.88	3/8	.41	1.31	5.38	225	0.25	8		
WH110	5.31	213	1.13	3/8	.41	1.75	650	300	0.38	8		
WHX111	625	1.22	1.13	1/2	.56	231	7.50	350	0.38	12		
WHX124	5.25	088	1.13	3/8	.41	1.94	638	300	0.38	12		
WHX124HD	5.25	Q94	1.50	1/2	.56	1.94	638	306	0.50	18		
WHX1322	7.50	1.63	1.50	1/2	.56	275	919	4.25	0.50	19		
WHX150	7.50	1.63	1.75	1/2	.56	275	919	4.19	0.50	22		
WHX155	7.50	1.63	1.81	1/2	.56	275	919	4.19	0.56	25		
WHX157	800	1.75	1.88	¹ /2	.56	250	9.56	4.00	0.63	26		
WHX159	800	1.69	213	¹ /2	.56	275	956	4.25	Q63	35		

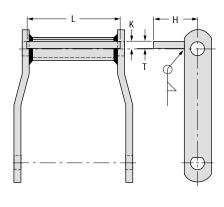

^① All holes round and straight. ^② K25 attachment is for WHX132.

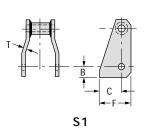
Dimensions are in	n inches. Weigh	ts are in pounds.

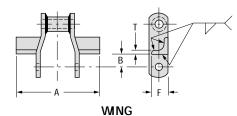

			132.	Dimensions are in inches. Weights are in po								
Chain Number	Α	в	с	Bolt Diameter Required	E	F	Н	т	Average Weight			
				D					per Ft			
				Μ								
WHX132	_	_	-	_	_	3.00	2.00	0.50	18			
WHX157	-	-	-	-	-	3.50	2.25	0.63	26			
WHX159	-	-	-	-	-	4.00	2.50	0.63	35			
				R1								
WH78	_	1.88	1.00	_	_	1.50	1.56	0.25	5			
WH82	-	2.18	1.25	-	-	1.63	1.88	0.25	6			
WHX124	-	2.72	1.13	-	-	2.16	1.88	0.38	9			
				R1 ¹ /2								
WH78	_	1.88	1.50	_	-	1.50	2.06	0.25	5			
				RR								
WH78	_	1.88	1.00	_	_	3.00	1.56	0.25	5			
WH82	_	2.19	1.25	-	_	3.25	1.88	0.25	7			
WHX124	-	2.72	1.13	-	-	4.34	1.88	0.38	10			
WHX124HD	_	2.72	1.13	-	-	5.13	2.13	0.50	18			
				R2								
WH78	_	0.69	1.00	_	-	1.50	1.56	0.25	5			
WH82	_	0.88	1.25	-	_	1.63	1.88	0.25	6			
WHX124	-	1.25	1.13	-	-	2.16	1.88	0.38	9			
		_		RR2								
WH78	_	0.69	1.00	_	_	3.00	1.56	0.25	5			
WH82	-	0.88	1.25	-	-	3.25	1.88	0.25	7			
WHX124	-	1.25	1.13	-	-	4.31	1.88	0.38	10			
				RF2	_							
WH78	_	1.50	2.13	_	-	3.00	2.69	0.63	10			
WHX124	-	2.50	2.50	-	-	4.25	3.25	1.00	19			
WHX124HD	-	2.50	2.50	-	-	4.75	3.50	1.00	25			

2 WLEDED STEEL CHAI

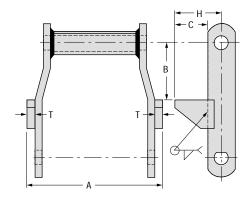

WELDED STEEL CHAINS - Attachments


RF121

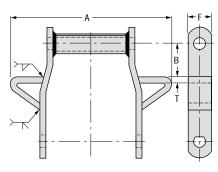

"A" STYLE



"C" STYLE



C1, C3, C4

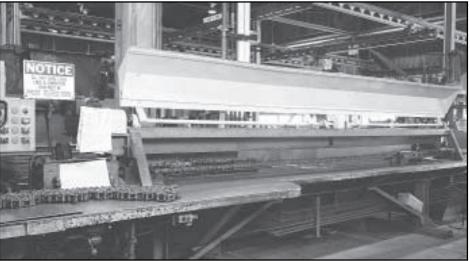

		Dimensions are in inches. W						. Weigh	leights are in pounds.			
				Bolt Diamet	er					Average		
Chain	A	В	С	Required		E	F	н	т	Weight		
Number	~	В	U	D		L .	r	п		per Ft.		
										perru		
				RF12	1							
WHX132	-	1.56	4.00	-		-	12.0	5.00	1.50	55		
WHX150	-	1.56	4.00	-		-	12.0	5.25	1.50	57		
WHX155	-	1.56	4.00	-		-	12.0	5.25	1.50	61		
WHX157	-	1.50	4.00	-		-	12.0	5.25	1.50	63		
WHX159	-	1.56	4.00	-		-	12.0	5.50	1.50	83		
				S1								
WHX132	-	1.16	5.00			-	6.00	-	0.50	25		
WHX150	-	1.16	5.25	-		-	6.50	-	0.50	27		
WHX155	-	1.50	5.25	-		-	6.50	-	0.56	31		
WHX157	-	1.50	5.25	-		-	6.50	-	0.63	34		
WHX159	-	1.88	5.25	-		-	6.75	-	0.63	46		
				WING	;							
WH78	6.00	0.75	_	_		_	1.00	_	0.25	7		
WH82	6.50	0.94	-	-		-	1.25	-	0.25	9		
WHX124	8.50	1.19	-			-	1.50	-	0.25	14		
WHX124HD	8.50	1.38	-	-		-	2.00	-	0.38	19		
WHX132	12.0	1.50	-			-	2.00	-	0.38	24		
WH260	7.00	0.53	-	-		-	1.75	-	-	4		
				"A" STYLE	CRAD	LE						
WHX132	_	_	3.00	_		_	11.0	3.00	_	22		
WHX150	_	_	3.50	-		_	11.0	3.00	_	25		
WHX155	-	-	3.50	-	_	-	11.0	3.00	-	28		
WHX157	-	-	3.50	-		_	11.0	3.00	_	29		
WHX159	-	-	4.00	-		-	11.0	3.00	-	39		
				"C" STYLE	CRAD	LE						
WHX132	_	_	3.00	_		_	11.0	3.00	_	29		
WHX150	_	_	3.00	-		_	11.0	3.00	_	31		
WHX155	-	-	3.00	-		-	11.0	3.00	-	34		
WHX157	_	_	3.00	-		_	11.5	3.00	_	35		
WHX159	-	-	4.00	-		-	11.0	3.00	-	47		
				Dime	nsior	ns are ir	n inches	. Weigh	ts are ir	n pounds.		
			I				1	<u> </u>		·1		
Chain Num	hor	н		к		L		т		erage eight		
onannian	ibei			n		-		•		rFt		
				C1 - WIDE	SEDI	2			- F			
WD & WDH	102	1.5						20		1 5		
WD & WDH				0.38		5.38 1 1 2	_	.38		15 11		
WD & WDH	-	2.3 2.3		0.38 0.38		4.13 9.13		.38 .38		17		
WD & WDH		2.3		0.38		9.13	_	.38		14		
WD & WDH		2.6	-	0.38		2.75		.38		20		
	-	2.0		C3 - WIDE								
WD & WDH	112	2.2	5	0.50		9.13		.50		19		
WD & WDH		3.0		0.50		3.00	_	.50		25		
WD & WDH		3.0		0.50		3.00		.50		26		
WD & WDH	-	3.0		0.50		3.63		.50		21		
WD & WDH		3.0	-	0.50		1.13	-	.50		26		
WDH580		3.0	-	0.50		1.13		.50		26		
		0.0		C4 - WIDE								
WD & WDH	102	3.7	5	0.38		5.38		.38		18		
WD & WDH		3.7		0.38		1.13		.38		12		
WD & WDH		3.7		0.38		+. 1 3 9.1 3		.38		21		
WD & WDH		3.7		0.38		9.13	_	.38		17		
WD & WDH		3.7 4.7		0.38		9.13 9.13		.38		28		
WD & WDH	-	4.7		0.30		2.75		.38		25		
WD & WDH	-	5.0		0.50		1.13		.50		33		
WDH580		5.0		0.50		1.13		.50		33		
wonsoo				0.00								

RR

Chain Number	A	В	С	Н	Т	Average Weight per Ft
		RR – W	IDE SERIES			
WD & WDH102	9.25	1.25	1.75	2.50	0.38	13
WD & WDH104	6.94	3.00	1.75	2.50	0.38	9
WD & WDH110	11.94	3.00	1.75	2.50	0.38	14
WD & WDH112	11.94	3.00	1.75	2.50	0.38	12
WD & WDH113	12.69	3.00	1.75	2.50	0.50	16
WD & WDH116	15.69	3.00	2.25	3.13	0.38	17
WD & WDH118	16.94	3.00	2.25	3.25	0.50	22
WD & WDH120	12.34	3.00	2.25	3.25	0.50	23
WD & WDH122	12.34	3.00	2.25	3.25	0.50	19
WD & WDH480	14.88	3.00	2.25	3.25	0.50	21
WDH580	14.88	3.00	2.25	3.25	0.50	21
WDH2210	12.09	3.00	-	2.50	0.38	13
WDH2316	15.91	3.00	-	3.00	0.38	16
WDH2380	14.78	3.00	-	3.25	0.50	21

Dimensions are in inches. Weights are in pounds.

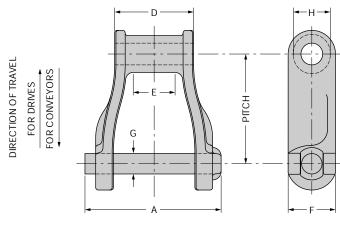
WING (Wide)


	Dimensions are in inches. Weights are in pounds										
Chain Number	A	В	F	Т	Average Weight per Ft						
	V	VING - WIDE S	SERIES								
WD & WDH102	14.38	1.75	1.50	0.38	15						
WD & WDH104	11.50	2.75	1.50	0.38	11						
WD & WDH110	17.00	2.63	1.50	0.38	16						
WD & WDH112	17.00	3.25	1.50	0.38	13						
WD & WDH113	17.00	2.50	1.50	0.50	17						
WD & WDH116	22.00	3.25	1.75	0.38	18						
WD & WDH120	17.00	3.25	2.00	0.50	28						
WD & WDH122	17.00	3.25	2.00	0.50	24						
WD & WDH480	22.00	3.25	2.00	0.50	25						
WDH580	22.00	3.25	2.00	0.50	25						
WDH2210	17.00	2.25	1.50	0.38	16						
WDH2316	22.00	3.25	1.75	0.38	18						
WDH2380	22.00	3.25	2.00	0.38	26						

CAST CHAINS

Engineered Steel and Welded Steel Chains are recommended for most applications. Engineered Steel construction is strongly recommended for bucket elevator applications.

Cast Chains (pages 47-51) may be slightly better suited to applications involving severely corrosive atmospheres or where chain temperatures reach above 500° F. Contact Rexnord for recommendations relating to the specific application.


Cast Combination Chains (pages 54-55) may provide superior service where heavy downward loading and sliding across an extremely gritty or abrasive surface has resulted in a chain wear problem. Where, in addition, problems have been encountered with chain breakage due to heavy impact loading, *XHD Heavy Duty Cast Combination Chain* (pages 52-53) should be considered.

All Cast and Cast Combination chains are 100% inspected and proof tested to ensure that no poorly molded links leave the factory.

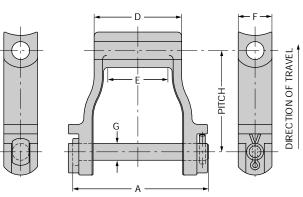
MILL - NARROW SERIES

Narrow Series Mill Chains are used primarily for drag conveyor service in the forest products industry, but are also used in many other applications where a sliding chain is required. The closed joint construction permits operation in a moderately dusty or abrasive atmosphere.

Furnished pin and cotter as standard.

Dimensions are in inches. Strengths, loads and weights are in pounds

Chain No.	Average	А	D	E	Sidebars	Pins	Barrel Diameter	Rated Working	Average Weight	Recommended Max. RPM for	Sprocket Unit
	Pitch				F	G	Н	Load	Per Foot	12T Sprocket	No. ^①
H74	2.609	3.06	1.63	0.94	1.00	0.38	0.88	1,850	3.0	115	78
H78	2.609	3.50	1.88	0.94	1.13	0.50	0.94	2,850	4.2	115	78
H82	3.075	4.06	2.19	1.25	1.25	0.56	1.22	3,700	5.5	90	103
H124	4.000	4.75	2.81	1.88	1.50	0.75		5.000	8.8	75	H124


^① Cast or fabricated sprockets may be used.

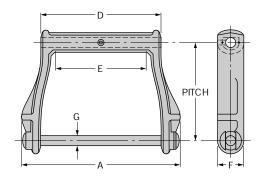
See pages 56-58 for attachment listings.

CAST CHAINS

DRAG CHAINS

Drag Chains are suited for handling abrasive bulk materials such as cement clinker, coal ashes and similar materials. Heads on links act as pushers for conveying material and broad wearing shoes are designed to prolong the life of the chain and the trough.

Manufactured in through hardened cast steel. Furnished pin and cotter as standard.


Dimensions are in inches. Strengths, loads and weights are in pounds.

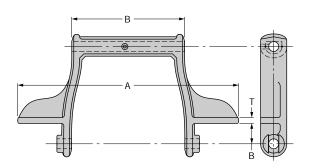
Chain No.	Average Pitch	A	E	Sidebars	Pins	Centerline Working		Weight	- J.	
			F	G	Н	LUau	Perroot	121 Sprocket		
CC119	6.000	8.25	5.25	3.63	2.00	1.00	16,000	21	11	119
CC123	9.000	12.59	8.44	6.25	2.50	1.25	23,400	36	7	H123

^① Cast or fabricated sprockets may be used.

H SERIES

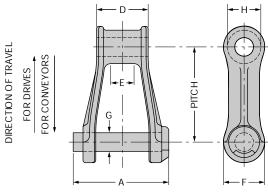
Available in riveted or cottered construction. Riveted construction shown and furnished unless otherwise specified.

Dimensions are in inches. Strengths, loads and weights are in pounds.


ſ	Chain No.	Average	Δ	р	F	Sidebars	Pins	Rated Working	Average Weight	Recommended Max. RPM for	Sprocket Unit
		Pitch	~		-	F	G	Load	Per Foot	12T Sprocket	No. ^①
ſ	H104	6.000	7.50	5.44	4.13	1.50	.63	4,160	8.0	11	H104
	H110	6.000	12.50	10.69	9.13	1.50	.63	4,160	12.9	11	H110

^① Cast or fabricated sprockets may be used.

Cast and Cast Combination Chains are not recommended for elevator service. Note: Dimensions are subject to change. Certified dimensions of ordered material are furnished upon request.


■ CAST CHAINS WING ATTACHMENT

Di	Dimensions are in inches. Weights are in pounds.											
Chain No.	Average Weight Per Foot	А	В	т								
H110	14.6	17.00	2.25	.22								

PINTLE

Pintle Chains are ideal for oven and furnace conveying operations. They are also suitable for a variety of low speed drive applications. The closed pin joint construction permits operation in a moderately dusty or abrasive atmosphere.

Furnished pin and cotter as standard.

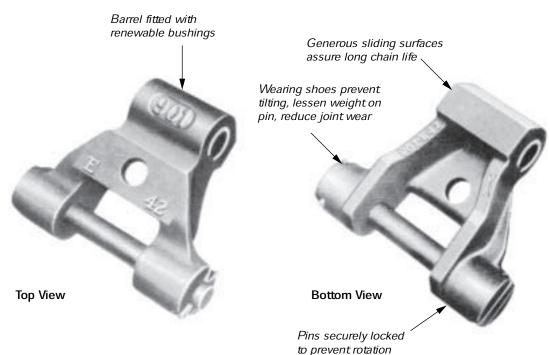
		Dimensions are in inches. Strengths, loads and weights are in pounds											
Chain No.	Average	А	D	E	Sidebars	Pins	Barrel Diameter	Rated Working	Average Weight	Recommended Max. RPM for	Sprocket Unit		
	Pitch				F	G	Н	Load	Per Foot	12T Sprocket	No. [®]		
945	1.630	2.06	1.06	0.69	0.75	.31	0.63	830	1.5	230	45		
955	1.630	2.25	1.13	0.69	0.84	.38	0.63	1,060	1.9	230	45		
977	2.308	2.50	1.25	0.69	1.00	.44	0.81	1,650	2.0	135	67		
988	2.609	3.00	1.63	0.88	0.94	.44	0.88	2,150	2.9	115	78		
C9103	3.075	3.69	1.88	1.13	1.50	.75	1.25	4,250	5.7	90	103		
4124	4.043	4.72	2.25	1.50	1.75	.81	1.38	4,560	8.5	65	4124		
C720	6.000	3.63	1.88	1.00	1.50	.69	1.38	3,220	4.2	35	720S		
720\$	6.000	3.94	1.88	1.44	1.56	.75	1.44	4,250	5.1	35	720S		
A730	6.000	3.94	2.00	1.13	1.75	.75	1.50	4,500	6.0	35	A730		
CS720S	6.000	3.94	1.88	1.13	1.56	.75	1.44	4,250	5.4	35	CS720S		
CS730	6.000	3.94	2.00	1.13	1.75	.75	1.50	4,500	6.4	35	CS730		
SCA9103	3.075	3.69	1.88	1.13	1.50	.75	1.25	4,250	5.7	90	103		

REX PINTLE CHAINS - 400/ 900 SERIES AND 700 SERIES

^① Cast or fabricated sprockets may be used.

■ CAST CHAINS

900 SERIES PINTLE CHAINS

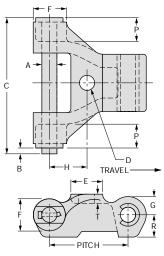

900 Pintle Chains, often called intermediate carrier chains, are widely used in the sugar industry. Multiple strands, fitted with overlapping, beaded slats, form a continuous apron conveyor for intermediate carrier service.

The renewable bushings provide a hard, durable pin-bearing surface and permit high working loads.

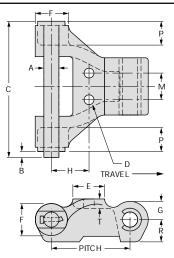
Links have outboard driving lugs for operation on double sprockets. This method of engagement prevents the jamming of cane in the link pockets. All links have generous sliding surfaces to resist wear. Wear shoes at the open end of the link support the chain and lessen the weight on the pin, thereby reducing joint wear. Heavy cross-sections, formed by the wear shoes and reinforcing ribs, strengthen the links. Slots cast in the lugs protect the pin ends and prevent pin rotation.

Links are available in cast material and stainless steel. Pins and bushings are available in case-hardened steel or stainless steel. Bushings of ultra-high molecular weight polyethylene (UHMW-PE) are also available.

Chains with cast links and stainless steel pins and bushings are normally recommended. For greater corrosion resistance all stainless steel chains are preferred.



LINK-BELT 900 SERIES PINTLE CHAINS


Dimensions are in inches. Strengths, loads and weights are in pounds.

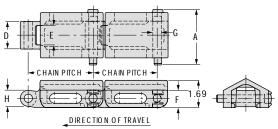
Link-Belt Chain No.	Average Pitch	Rated Working Load	Average Weight	Sprocket Unit No.	Attachments Available
901	3.149	4,150	12.2	901	E41, E42, E43, E44
902	2.970	4,150	12.5	902	E41, E42, E43, E44
907	3.170	4,150	12.1	907	E51

CAST CHAINS

E 41, E 42, E 51 Attachments

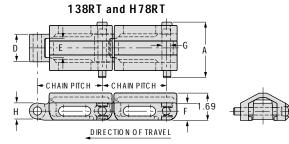
E 43, E 44 Attachments

Dimensions are in inches. Weights are in pounds.


Chain No.	Α	В	C	D	E	F	G	Н	М	Р	R	Т	Weight
						E4	11						
901	. 625	.19	5.50	.66	1.25	1.34	.78	1.38	-	1.13	.94	.36	12.2
902	. 625	.19	5.50	.66	1.25	1.34	.88	1.38	-	1.13	.94	.36	12.5
E42 [®]													
901	. 625	.19	5.50	.66	1.25	1.34	.78	1.58	-	1.13	.94	.36	12.2
902	. 625	.19	5.50	.66	1.25	1.34	.88	1.48	-	1.13	.94	.36	12.5
						E4	3						
901	. 625	.19	5.50	.41	1.25	1.34	.78	1.38	1.09	1.13	.94	.36	12.2
902	. 625	.19	5.50	.41	1.25	1.34	.88	1.38	1.09	1.13	.94	.36	12.5
						E4	4 0						
901	. 625	.19	5.50	.41	1.25	1.34	.78	1.58	1.09	1.13	.94	.36	12.2
902	. 625	.19	5.50	.41	1.25	1.34	.88	1.48	1.09	1.13	.94	.36	12.5
						E!	51						
907	. 625	.19	5.50	.66	1.31	1.44	.72	1.69	-	1.13	.94	.36	12.1
() S lats may	he eccemble	ed with long l		::::::::::::::::::::::::::::::::::::::									

 $^{\textcircled{}}$ S lats may be assembled with laps leading or trailing.

TRANSFER


These chains are very popular on lumber sorting tables or anywhere a variety of flat products are sorted. Roof-Top Chain is used chiefly in multiple strands on transfer conveyors.

130R T

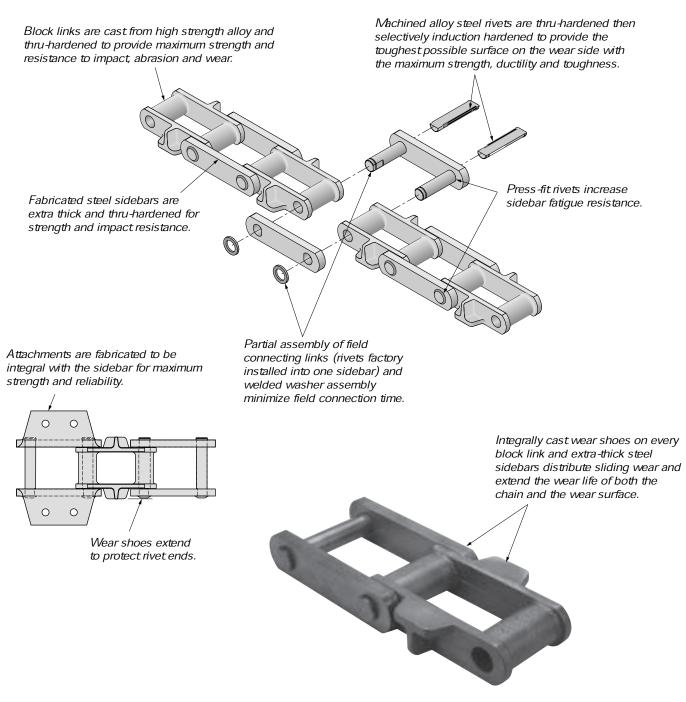
Furnished pin and cotter as standard.

TRANSFER CHAINS – ROOF-TOP

Furnished pin and cotter as standard.

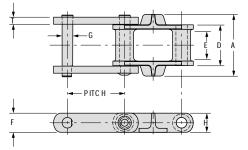
Chain No.	Average Pitch	A	D	E Sidebars		Pins	Barrel Diameter	Rated Average Working Weight		Recommended Max. RPM for	Sprocket Unit No. ^①
	men				F	G	н	Load	Per Foot	12T Sprocket	140.
H78RT	2.609	3.50	1.88	1.06	1.13	.50	0.94	2,350	6.0	115	78
130RT	4.000	3.50	1.69	.95	1.06	.50	1.00	2,200	5.2	60	130
138RT	4.000	3.50	1.69	.95	1.06	.50	1.00	2,200	5.8	60	130

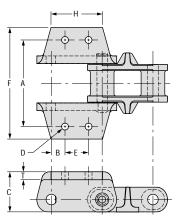

^① C ast or fabricated sprockets may be used.

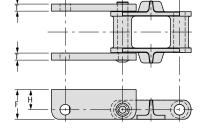

C ast and C ast Combination C hains are not recommended for elevator service. Note: Dimensions are subject to change. Certified dimensions of ordered material are furnished upon request.

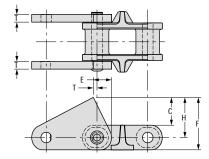
CAST CHAINS

HEAVY DUTY CAST COMBINATION


XHD Extra Heavy Duty Cast Combination Chains are specifically designed for applications where chain wear and breakage problems result due to a combination of heavy impact loading and an extremely gritty or abrasive environment. XHD chains include features that make them ideally suited for applications such as log handling conveyors.

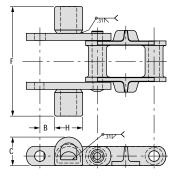

Cast and Cast Combination Chains are not recommended for elevator service.


■ CAST CHAINS

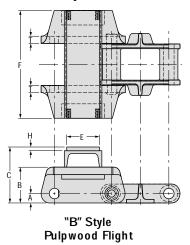


Dimensions are in inches. Weights are in pounds.

Chain No.	Average			Side	Sidebar		Barrel	Rated Working	Average Weight	Recommended Max. RPM for 12T	Sprocket	
	Pitch		, D	l	T	F	G	Н	Load	per Foot	Sprocket	Number
XHD124	4.060	4.88	3.00	1.75	.63	2.00	0.88	1.63	9,000	17.0	60	XHD124
XHD132	6.050	6.50	4.31	2.94	.75	2.00	1.13	1.75	17,000	18.4	30	XHD132
XHD157	6.050	6.88	4.63	3.00	.75	2.00	1.25	1.84	20,000	24.3	30	XHD157


M1

S1


Chain	Α	В	с	[) ①	F	F	н	т	Average
Number		В	U	Bolt Dia.	Bolt Hole	E	r	п		Weight per Ft
					K2					
XHD124	7.13	1.06	3.25	1/2	.56	1.94	9.13	4.25	0.63	26
XHD132	9.00	1.65	3.75	1/2	.56	2.75	11.31	6.34	0.75	31
XHD157	9.31	1.65	4.00	1/2	.56	2.75	11.31	6.81	0.75	36
					M1					
XHD132	-	-	-	-	-	-	3.00	2.00	0.75	22
XHD157	-	-	-	-	-	-	3.50	2.25	0.75	28
					S1					
XHD124	-	0.32	2.25	-	-	1.50	4.25	3.25	0.63	20
XHD132	-	0.58	2.75	-	-	2.00	4.75	3.75	0.75	23
XHD157	-	0.39	2.75	-	-	2.00	5.25	4.00	0.75	28
				"C" S	Style Cradl	e				
XHD132	-	1.53	3.00	-	-	_	11.50	3.00	-	26
XHD157	-	1.53	3.00	-	-	-	13.50	3.00	-	29
			"	B″ Style	Pulpwood	Flight				
XHD132	1.50	2.75	4.88	-	_	3.50	11.31	0.38	0.75	32
XHD157	1.50	2.75	4.88	-	-	3.50	11.31	0.38	0.75	37

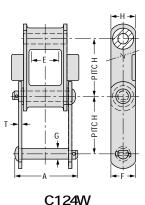
Cast and Cast Combination Chains are not recommended for elevator service. Note: Dimensions are subject to change. Certified dimensions of ordered material are furnished upon request.

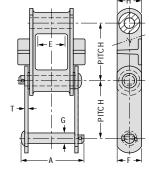
"C" Style Cradle

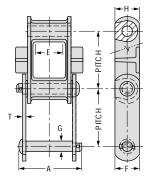
10
<u> </u>
\sim
÷
\mathbf{O}
L

CAST CHAINS

COMBINATION


Combination Chains are used extensively for conveyor applications. Because the chain joints are well protected and have generous pin bearing surfaces, they are widely used for handling stone, gravel and similar materials. They are also used for drag conveyor applications because the large link surfaces provide long wear life.


LINK-BELT® STANDARD SERIES CAST COMBINATION CHAINS


							D	imensions a	are in inches	s. Strengths, Ic	ads and weights	are in pounds.
Link-Belt	ink-Belt Average nain No. Pitch		D	E	т	Sidebars	Pins	Barrel Diameter	Rated Working	Average Weight	Recommended Max. RPM for	Sprocket Unit No. ①
Chan No.	FIGH					F	G	Н	Load	Per Foot	12T Sprocket	I¥0. ©
						ROLL	er-top					
C55	1.630	2.06	1.20	0.60	0.19	0.75	0.38	0.63	1,100	2.0	230	55
C56	1.630	2.06	1.20	0.73	0.19	0.75	0.38	0.74	1,100	2.1	230	56
C77	2.308	2.19	1.25	0.50	0.19	0.88	0.44	0.72	1,400	2.2	135	67
C188	2.609	2.69	1.56	0.74	0.25	1.13	0.50	0.88	2,400	3.6	115	78
C131	3.075	3.47	2.03	1.09	0.38	1.50	0.63	1.22	3,800	6.5	90	103
C102B	4.000	4.31	2.88	1.63	0.38	1.50	0.63	0.97	5,000	6.7	60	102B
C102 ¹ /2	4.040	4.59	2.97	1.92	0.38	1.75	0.75	1.38	6,700	9.2	60	1021/2
C111	4.760	4.72	3.38	2.12	0.38	1.75	0.75	1.44	7,500	9.6	45	111
C133	6.000	3.88	2.25	1.25	0.38	2.00	0.88	1.75	5,000	8.8	35	133
C110	6.000	4.31	2.88	1.76	0.38	1.50	0.63	1.25	5,000	6.0	35	110
C132	6.050	6.27	4.38	2.62	0.50	2.00	1.00	1.72	10,500	14.0	30	132

^① C ast or fabricated sprockets may be used.

See pages 56-58 for attachment listings.

C111W2, C132W2

Available in riveted or cottered construction. Cottered construction shown. Cottered construction furnished unless otherwise specified.

C132W1

	Dimensions are in inches. Strengths, loads and weights are in pounds.													
Link-Belt Chain No.	Average Pitch	А	D	E	т	Sidebars	Pins	Barrel Diameter	Rated Working	Average Weight Per	Recommended Max. RPM for	Sprocket Unit		
	PIGI					F	G	Н	Load	Ĕ.	12T Sprocket	140		
C111W2	4.760	5.12	2.42	.38	.44	1.75	.75	.72	5,950	11.8	55	111		
C124W3	4.063	5.12	1.69	.50	.38	2.25	.88	1.75	6,300	15.4	75	1240		
C132W1	6.050	6.54	3.04	.50	.44	2.00	1.00	1.73	8,330	15.6	40	132		
C132W2	6.050	6.54	3.04	.50	.44	2.00	1.00	1.73	8,330	16.0	40	132		

^① C ast or fabricated sprockets may be used.

Induction heat treated sidebars.

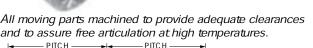
③ Round barrel. All other chains have an elliptical barrel. See page 58 for attachment listings.

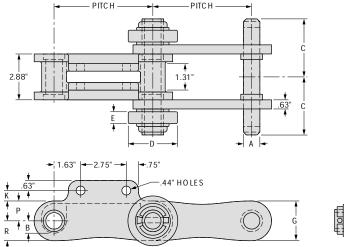
Cast and Cast Combination Chains are not recommended for elevator service.

CAST CHAINS

SM COMBINATION CHAINS

SM Combination Chains are designed primarily for high temperature applications and are extensively used for conveying steel sheets or bars through normalizing and heat-treating furnaces. The chains usually operate in channels under the floor and are thus protected from full exposure to furnace heat. The conveyed material is pushed through the furnace by fingers attached to the center links of the chain. The center links and sidebars are well proportioned for strength and rigidity. Sidebars are cast with bosses which fit into sockets in the center links. This design interlocks the center links and sidebars and relieves the pin from handling the entire working load placed on the chain. Steel pins are heat-treated. They are free to float in the chain joint. This permits pin rotation, thus exposing the entire pin circumference to wear. It also helps correct pin bending that might occur as a result of high temperatures. The pins extend on each side of the chain to provide a mounting for outboard rollers. Rollers rotate freely on case-hardened steel bushings and are held in place by cast washers.


Clearances between all moving parts are carefully controlled by machining, to prevent binding during operation at high temperatures.

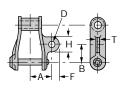

> Bosses on sidebars fit sockets in center links to reduce stress on pins.

Sidebars and center links are cast

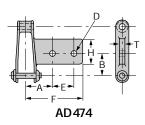
Rollers rotate freely on hardened steel bushings.

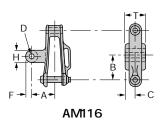
Free-floating steel pins are heat-treated. Rotation helps correct bending at high temperatures and distributes wear over entire pin surface.

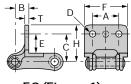
Dimensions are in inches. Strengths, loads and weights are in pounds.

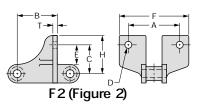

Link-Belt Chain No.	Average Pitch	A	В	С	D	E	G	к	Р	R	Rated Working Load	Average Weight Per Foot	Sprocket Unit No. ①
SMGL618 ²	6.000	.98	.75	3.44	3.00	.78	2.50	.72	1.19	1.19	Contact	24	S MG L 61 8
SMGL628	6.000	1.23	1.00	3.47	3.50	.81	3.00	.53	1.38	1.38	Rexnord	31	S MG L 628
SM621	9.000		O ffset S M C ombination C hain, contact R exnord									S M621	
SM622	6.000		Offset SMC ombination C hain, contact Rexnord									S M622	

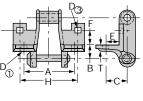
^① C ast or fabricated sprockets may be used.

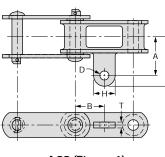

⁽²⁾ C hain with plain center link (no attachment) also available.


Cast and Cast Combination Chains are not recommended for elevator service.

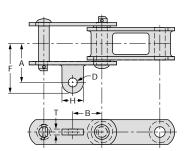

CAST CHAINS – Attachments


A22 (Figure 1), A42





F2 (Figure 1)

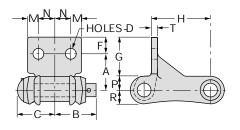


F4

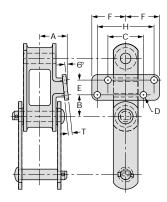
A22 (Figure 1)

A22 (Figure 2)

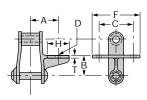
Dimensions are in inches.

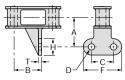

						Dimensions are in inche				
Chain Number	A	В	с	_	0	E	F	н	т	
Number					Bolt Hole					
				A22 (Fig	ure 1)					
H78	1.88	1.31	-	³ /8	.41	-	0.66	1.31	0.41	
				A22 (Fig	ure 2)				_	
C188	1.44	1.31	-	3/8	.41	-	2.08	1.19	.38	
				A22 (Fig	ure 3)					
C55	1.50	.81	-	⁵ /16	.34	-	1.92	.75	.25	
				A42	2					
C9103	1.84	1.50	-	³ /8	.41	-	0.63	1.25	0.41	
				AD 47						
720\$	3.38	2.25	-	¹ /2	.56	2.50	-	2.81	0.50	
C720	3.38	2.25	-	1/2 F4	.56	2.50	-	2.81	0.50	
	0.75	1.00						1.50	0.01	
H78 ²	3.75	1.00	1.44	3 _{/8} 3 AM11	.41	0.88	0.94	4.50	0.31	
720S	2.69	3.00	0.94	5/8	.69		0.69	1.38	1.88	
7203 C720	2.69	3.00	0.94	⁵ /8	.69	_	0.69	1.38	1.88	
0720	2.00	0.00	0.01	F2 (Figu			0.00	1.00	1.00	
720S ⁴⁵	4.25	3.00	2.00	3/8	.41	1.25	5.31	3.81	0.25	
A730 ⁶	4.25	3.00	2.00	3/8	.41	1.13	5.50	3.94	0.38	
C720	4.25	3.00	2.00	3/8	.41	1.25	5.31	3.81	0.25	
955	1.06	0.63	0.94	³ /16	.22	0.50	1.81	1.25	0.16	
977	1.75	0.75	1.44	⁵ /16	.34	0.94	2.63	2.00	0.25	
988	2.03	1.19	1.38	⁵ /16	.34	0.90	2.90	1.97	0.28	
C9103	2.22	1.25	2.00	3/8	.41	1.25	3.00	2.66	0.31	
				F2 (Figu	re 2)					
C77	1.75	3.40	1.00	⁵ /16	.36	.94	2.62	1.94	.25	
C102.5	5.75	2.92	2.00	3/8	.44	1.13	7.12	3.07	.31	
C111	6.38	3.00	2.00	³ /8	.44	1.13	7.75	3.00	.34	
C111 (SPECIAL)	6.38	3.00	2.00	³ /8	.44	1.13	7.75	3.00	.34	
C131	4.69	213	1.69	3/8	.44	.94	6.12	2.75	.44	
C188	2.00	1.38	1.50	⁵ /16	.34	.94	2.75	2.18	.31	

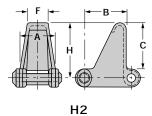
Note: Links with attachments on only one side are made right- and left-hand.

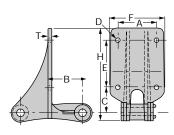

^① Style of hole, round.
 ^② Furnished cottered only at attachment links.

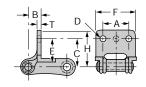
- burnished cottered only at accommension.
 Style of hole, square.
 No's. C 720S and 720S -F2 have 2 additional holes 1.94 inches apart and 1.31 inches above first line of holes. Attachments face toward open end of link.
 Attachment face for these chains has cloverleaf outline instead of rectangular.
 No. A 730-F2 has 2 additional holes 2 inches apart and 1.31 inches above first line of holes. Attachment faces toward open end of link.


CAST CHAINS – Attachments


F8


G6



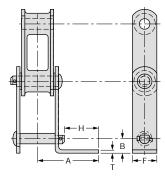

G19 (Figure 1)

G19 (Figure 2)

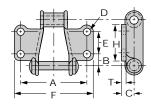
F 26, F 28

F 28, F 29

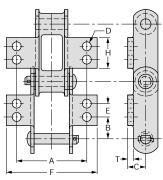
Dimensions are in inches.

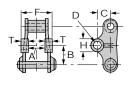

r				1					
Chain	A	В	с		D(1)	E	F	н	т
Number			-		Bolt Hole				
				F	3				
4124	2.94	-	2.19	1/2	.56	1.31	5.00	3.88	.50
				F2	6				
720S	3.75	3.00	2.38	³ /8	.41	2.63	5.38	6.75	0.25
C720	3.75	3.00	2.38	³ /8	.41	2.63	5.38	6.75	0.25
CS720S	3.75	3.00	2.38	³ /8	.41	2.63	5.38	6.75	0.25
				F2	8				
720CS	3.75	3.00	2.38	3/8	.41	4.50	5.38	8.84	0.25
C720	3.75	3.00	2.38	³ /8	.41	4.50	5.50	8.88	0.25
CS720S	3.75	3.00	2.38	³ /8	.41	4.50	5.38	8.84	0.25
CS730	3.75	3.00	2.38	3/8	.41	4.50	5.38	8.31	0.25
				F2	9				
C9103	2.22	0.44	2.00	³ /8	.41	1.25	3.06	2.66	0.41
SCA9103	2.72	263	2.00	³ /8	.41	N/A	3.06	2.66	0.38
				F3	0				
C9103	2.22	0.63	2.00	1/2	.56	1.25	3.25	2.63	0.34
				G6	2				
C102.5	2.62	1.59	2.06	³ /8	.41	.88	2.31	3.50	.25
C131	2.19	1.26	1.68	³ /8	.44	.56	2.03	3.06	.28
C188	1.60	1.03	1.68	3/8	.44	.56	1.91	3.06	.25
				G19 (Fi	gure 1)				
H78	2.19	1.63	2.63	³ /8	.41	-	3.50	1.25	0.25
				G19 (Fi	gure 2)				
C55	1.69	1.04	.88	⁵ /16	.34	-	1.75	1.00	-
C131	2.39	2.01	2.88	3/8	.44	-	3.88	1.00	.28
C188	1.94	1.86	1.50	³ /8	.41	-	2.88	1.25	.25
Chain Numb	er A		в	C	D	E	F	н	Т
L									

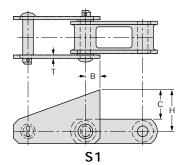
Chain Number	A	В	С	D	E	F	н	Т			
				H2							
H78	2.38	2.31	2.94	-	-	1.06	3.50	_			
Note: Links with attachments on only one side are made right- and left-hand.											

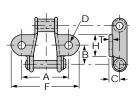

① Style of hole, round.
② Right-hand attachment shown. Left-hand also available.

CAST CHAINS

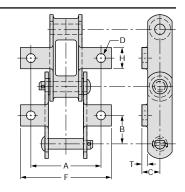

CAST CHAINS – Attachments


G27


K2 (Figure 1)



K2 (Figure 2), K3



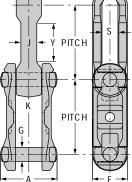
K1 (Figure 1)

K1 (Figure 2)

Dimensions are in inches

	Dimensions are in in									
Chain Number	A	В	C	_	1) Bolt Hole	E	F	H	T	
				G27						
C188	332	0.88	_	-	_	_	1.12	1.89	0.25	
				K1 (Figu	ire 1)					
H78	400	1.25	0.81	³ /8	0.41 ³	_	500	1.38	0.22	
952	213	0.69	Q.44		0.222	-	288	0.75	0.16	
955	200	0.78	Q44	1/4	0.28 ²	-	288	Q81	Q16	
962	238	0.78	Q.44	1/4	0.28	_	328	Q.97	Q19	
977	300	1.16	0.66	1/4	0.28 ³	-	388	1.31	Q16	
988	381	1.31	0.66	_	0.34	_	4.69	1.38	Q19	
C9103	4.19	1.50	0.81	3/8	0.413	-	5.44	1.72	0.22	
				K1 (Figu	re 2)					
C55	204	0.82	0.50		0.31	_	292	0.82	Q16	
C77	300	1.15	0.66		0.41	_	4.13	1.12	0.22	
C131	412	1.54	1.00		0.44	-	5.50	1.50	0.384	
C188	375	1.31	0.81	3/8	0.44	_	5.06	1.19	0.25	
			0.01	K2 (Figu	re 1)				0	
H78	4.00	Q.41	Q81	3/8	0.41	1.13	500	213	0.25	
988	363	0.66	0.66		0.34	1.25	4.50	213	Q19	
		0.00		K2 (Figu						
C102B	5.32	1.12	1.00		0,41	1.75	657	288	0.384	
C110	5.32	212	1.00		0.41	1.75	664	288	0.385	
C111	625	1.22	1.13		0.53	231	7.50	350	0.380	
C131	412	0.79	1.00		0.53	1.50	5,25	250	0.386	
C132	7.50	1.65	1.25		0.53	275	9.36	4.00	0.50	
C188	4.18	0.68	.81	5/16	0.34	1.25	5.10	212	0.25	
4124	500	1.13	1.19		0.44	1.81	626	313	0.28	
		_	-	K3	-	_				
C102.5	5.31	1.14	1.19		0.53	1.75	655	288	0.50	
01020	001		1.10	, <u>–</u> M1	0.00	1.70	400	200	0.00	
720S	1.50	300	1.50		0.81	_	300	1.50	0.75	
C720	1.50	300	1.50		0.81	_	300	1.50	0.75	
0720	1.00	400	1.00	S1	0.01		400	1.00	0,0	
C102B		002	200					275	0.20	
C102B	_	0.83 1.01	300 288		_	_	_	375 387	0.38 0.38	
C102.5		0.86	350					4.38	0.38	
C111 W2	_	0.86	350		_	_	_	4.38	0.38	
C132	_	1.13	4.00		_	_	_	4.38 5.00	0.50	
C132 W1	_	1.13	4.00		-	_	_	500	0.50	
C132 W1	_	1.13	4.00		_	_	_	500	0.50	
Note: Links v									030	

Note: Links with attachments on only one side are made right- and left-hand.
Style of hole, round. (Lhless otherwise noted.)
Style of hole, round countersunk.
Style of hole, square.
Steel sidebar. Centerlink attachment is .25".
Steel sidebar. Centerlink attachment is .31".

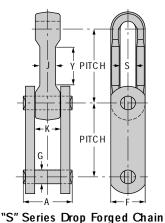

Note: Dimensions are subject to change. Certified dimensions of ordered material are furnished upon request.

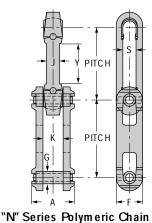
CAST CHAINS

DROP FORGED

Standard Forged Chain combines the strength and relatively light weight to make it a good choice for use with trolley, scraper flight and assembly conveyors. All forged construction with thru-hardened links and pins assures long life.

X Series Chain flexes both horizontally and vertically, which makes it ideal for overhead conveyors with vertical curves.




Standard Forged Chain

"X" Series Drop Forged Chain

S Series Chain features a thru-hardened forged block link, induction hardened steel outer sidebars and induction hardened staked rivets for greater wear resistance, higher system tensions, and positive rivet retention.

N348 is used primarily for overhead conveyor service where corrosion is a concern. Polymeric links and stainless steel pins of N348 resist corrosion.

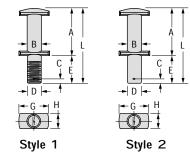
OP FORGED CHAINS

Dimensions are in inches. Strengths, loads and weights are in pounds.

Overal Link Chain Rated Average Pins Rex Average Average Brinell Sprocket Unit Width Thickness Height Κ S Working Chain Part Ultimate Chain No. Pitch Weight Hardness **No.** ① G Load Strength А F J STANDARD FORGED CHAIN Side Link 311/388 468 331/388 340/415 4.031 0.75 3.31 1.88 1.13 0.88 88,000 468 1.69 5,800 7.8 C enter Link Pin Side Link Center Link 311/388 331/388 **698**³ 6.031 1.13 3.75 1.63 2.59 1.00 1.25 10,800 12.5 175,000 698 Pin 340/415 Side Link 311/388 **998**3 9.031 1.13 3.75 1.69 2.66 1.00 1.25 10,800 10.3 Center Link Pin 31/388 175,000 998 340/415 Side Link Center Link 302/363 302/363 9118 9.031 1.38 4.88 2.13 3.00 1.50 18,300 1250.000 9118² 1.31 16.3 Pin 311/363 "X" SERIES DROP FORGED CHAIN 302/341 302/341 Side Link 1.75 X348 3.015 0.50 0.81 1.09 0.50 0.56 2,000 40,000 348 1.9 Center Link 341/388 Pin Side Link 311/388 331/388 363/415 X458³ 4.031 0.63 2.19 1.06 1.38 0.63 0.69 4,000 3.1 Center Link Pin 57,000 458 311/388 Side Link X6783 6.031 0.88 3.03 1.38 2.00 0.81 1.00 7,100 6.5 Center Link Pin 331/388 340/415 125,000 678

Rex Chain No.	Average Pitch	Pins	Overall Width	к	Chain Height	Link Thickness	s	Rated Working	Average Weight	Sprocket Unit No. ^①
	PIGI	G	A		F	J		Load	weight	NO. ~
				"S" SERI	ES DROP FOR	GED CHAIN				
S348	3.019	0.50	1.75	0.81	1.13	0.50	0.56	2,000	2.4	348
S458	4.031	0.63	2.06	1.06	1.38	0.63	0.69	4,000	3.5	458
S468	4.031	0.75	2.94	1.69	2.00	1.13	0.88	6,700	7.9	468
S678	6.031	0.88	3.00	1.44	2.00	0.81	1.00	7,700	8.6	678
S698	6.031	1.13	3.25	1.63	2.50	1.00	1.25	10,800	11.7	698
\$698HD	6.031	1.13	3.88	1.63	2.88	1.00	1.25	13,000	12.2	698
\$998	9.031	1.13	3.25	1.69	2.50	1.00	1.25	10,800	12.1	998
S9118	9.031	1.38	4.38	2.13	3.00	1.31	1.50	18,300	23.3	9118 ²
			·	"N" SER	IES POLYME	RIC CHAIN			·	
N348	3.015	0.50	1.75	0.81	1.09	0.50	0.50	700	0.6	348

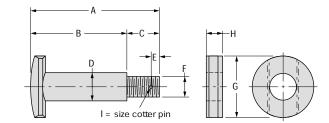
^① C ast or fabricated sprockets may be used.


⁽²⁾ Available only as a fabricated sprocket.

⁽³⁾ Available with 8642 alloy steel. Increases hardness and ultimate strength. Contact Rexnord.

CHAIN NUMBER	ATTACHMENTS AVAILABLE*
S 348, X 348	A53 , § 2
S 458, X 458	A22, A52, F2A, M9, M37, M40, S22, extended pin
468, S 468	F2A, F2C, S2, extended pin
X658	
S 678, X 678	A22, A53, F2C, F2F, G47, K2, extended pin
698, S 698	A 53, A 54, F 2D, G 2-2A, extended pin
998, S 998	A42, F2A, G1B, S2A, S22, extended pin
9118, \$9118	S22

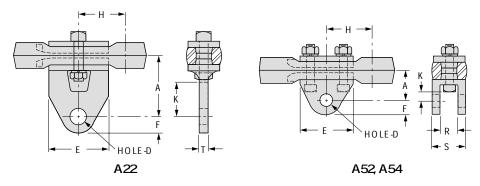
*Bold face type indicates attachments normally carried in stock.

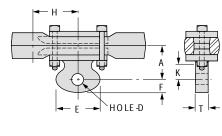

ATTACHMENT PINS

Dimensions are in inches. Strengths, loads and weights are in pounds.

Chain Number	Style	Α	В	C ^①	D	E ²	F	G	Н	Extension (Diameter)			
X348	1	B + C	1.72	1.00-2.00	0.50	0.25	0.50	1.19	0.50	0.50 Threaded			
458	1	B + C	2.20	1.13-2.63	0.63	0.25	0.50	1.22	0.63	0.50 Threaded			
458	1 or 2	B + C	2.20	2.00-5.50	0.63	0.25	0.63	1.22	0.63	0.63 Threaded or Plain			
468	1 or 2	B + C	3.19	1.38-2.63	0.75	_	0.75	1.69	0.77	0.75 Threaded or Plain			
468	1	B + C	3.19	1.50-5.50	0.75	_	0.63	1.69	0.77	0.63 Threaded			
678	1 or 2	B + C	3.00	1.00-3.00	0.88	0.25	0.63	1.88	0.88	0.63 Threaded or Plain			
678	1	B + C	3.00	1.00-1.50	0.88	0.25	0.75	1.88	0.88	0.75 Threaded			
678	1	B + C	3.00	1.50-2.25	0.88	-	0.88	1.88	0.88	0.88 Threaded			
698, 998	1 or 2	B + C	3.88	2.00	1.13	0.50	0.75	2.50	1.16	0.75 Threaded or Plain			
698, 998	1 or 2	B + C	3.80	2.00	1.13	0.31	1.13	2.50	1.13	1.13 Threaded or Plain			
9118	1 or 2	7.38	4.88	2.50	1.38	0.50	1.13	3.00	1.44	1.13 Threaded or Plain			
9118	1 or 2	7.38	4.88	2.50	1.38	0.50	1.38	3.00	1.44	1.38 Threaded or Plain			

COUPLING PINS AND WASHERS

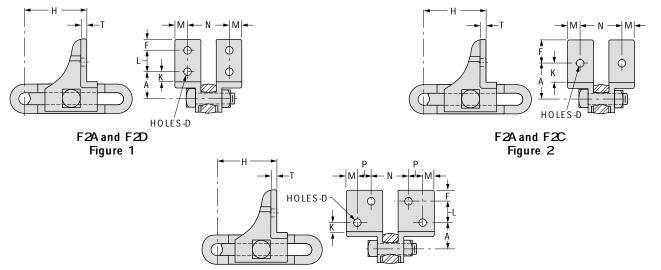



Bolted Coupler Pin Available for all rivetless chains.

Dimensions are in inches. Strengths, loads and weights are in pounds.

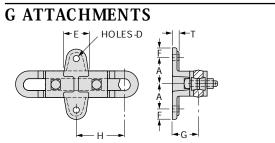
Chain Number	Α	В	С	D	E	F	G	н	l Cotter Size	Extension (Dia.)	Average Weight
X348	2.31	1.5	.81	0.5	0.16	0.38	1.00	0.27	0.13	0.38 dia. threaded	0.20
458	2.88	1.89	.98	0.63	0.30	0.50	1.25	0.28	0.13	0.50 dia. threaded	0.38
468	3.97	2.88	1.09	0.75	0.19	0.63	1.56	0.39	0.13	0.63 dia. threaded	0.75
X678	3.91	2.94	.97	0.88	0.25	0.63	1.88	0.50	0.13	0.63 dia. threaded	0.94
698	4.92	3.81	1.11	1.13	0.27	0.75	2.38	0.63	0.13	0.75 dia. threaded	2.00
998	4.92	3.81	1.11	1.13	0.27	0.75	2.38	0.63	0.13	0.75 dia. threaded	2.00
9118	6.09	4.97	1.13	1.38	0.25	1.00	3.00	0.69	0.19	1.00 dia. threaded	4.00

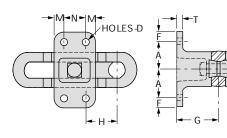
A ATTACHMENTS


A42

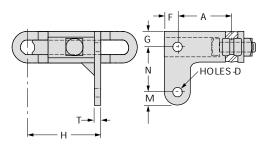
DROP FORGED CHAINS

Dimensions are in inches. Strengths, loads and weights are in pounds.

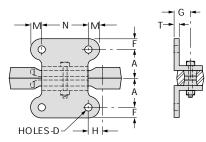

Attachment No.	Chain Number	Α	D	E	F	Н	K	R	S	Т	Average Weight
A22	X458, S458	2.00	0.68	2.38	0.81	2.02	1.06	-	-	0.50	1.5
	X678, S678	2.84	0.66	3.63	0.75	3.00	1.50	-	-	0.53	3.1
A42	998, \$998	2.75	0.91	4.00	0.94	4.50	1.63	_	_	1.06	6.9
A52	X458, S458	2.88	0.53	2.25	0.63	2.00	1.88	0.69	1.19	-	1.6
A53	X348, S348	2.50	0.53	1.59	0.63	1.50	1.75	0.56	0.94	-	0.6
	X678, S678	2.25	0.66	3.56	0.88	3.00	1.09	1.13	1.88	-	2.8
	698, S698	2.75	0.91	4.00	0.94	3.00	1.06	1.44	2.38	_	6.0
A54	698, S698	2.50	0.66	2.97	0.88	3.00	1.13	1.13	2.00	-	4.0


F ATTACHMENTS

F2C and F2F Figure 3


		-			_	Di	mensions	are in ind	nes. Streng	gths, loads	s and weig	phts are in pounds.
Attachment No.	Chain Number	Α	D	F	Н	K	L	М	N	Р	Т	Average Weight
F2A Figure 1	998, S998	2.02	0.56	0.63	6.00	0.75	2.00	0.88	6.00	-	0.38	9.1
F2A Figure 3	X458, S458	1.94	0.56	0.94	3.22	0.94	-	0.75	3.63	-	0.25	2.2
	468, S468	1.97	0.56	0.75	2.78	1.00	-	0.94	4.00	-	0.31	2.5
F2C Figure 3	X678, S678	1.94	0.56	0.81	4.69	0.88	1.38	0.69	2.56	0.88	0.31	4.7
F2C Figure 2	468, S468	1.97	0.56	0.88	2.91	1.00	-	0.75	3.94	-	0.25	2.4
F2D	698, S 698	2.03	0.56	0.75	4.34	0.75	2.00	1.00	3.94	-	0.34	5.9
F2F	X678, S678	1.94	0.56	0.63	4.69	0.88	1.25	0.81	2.06	1.06	0.38	4.4

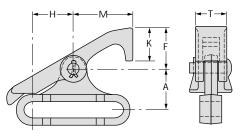
G 2-2A

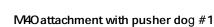


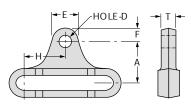
G 47

Dimensions are in inches. Strengths, loads and weights are in pounds.

Attachment No.	Chain Number	Α	D	F	G	Н	М	Ν	Т	Average Weight
G1B	998, \$998	2.50	0.69	1.00	2.94	2.53	1.00	4.00	0.38	11.2
G2-2A	698, S 698	2.00	0.56	0.75	4.00	1.44	0.75	3.25	0.38	7.4
G47	X678, S678	3.50	0.56	0.88	1.00	4.81	0.88	3.00	0.38	52

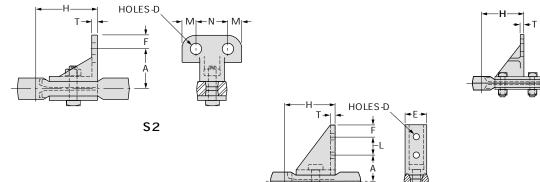

K ATTACHMENTS

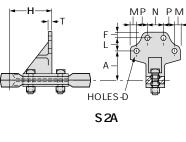



Dimensions are in inches	. Strengths, load	s and weights are	in pounds.
Dimensions are infinited	. o a chiga is, ioaa	s and worging are	ni pourius.

Attachment No.	Chain Number	Α	D	F	G	Н	М	N	Т	Average Weight
K2	X678, S678	1.75	0.56	0.75	1.38	1.50	0.75	3.00	0.38	3.9

MATTACHMENTS




M37, M40

Dimensions are in inches. Strengths, loads and weights are in pounds.

Attachment No.	Chain Number	Α	D	F	G	Н	М	N	T	Average Weight
M37	X458, S458	2	0.77	1.13	0.56	2	-	-	0.45	1.3
M40	X458, S458	2	0.53	1.13	0.56	2	-	-	0.45	1.3
M40 with pusher dog	X458, S458	2	_	_	2	2	1.63	2.81	1.38	3.1

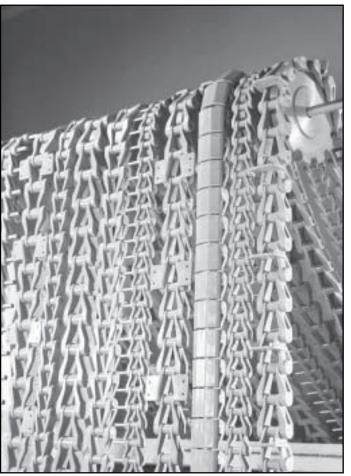
S ATTACHMENTS

S22

Dimensions are in inches. Strengths, loads and weights are in poun	ds.
--	-----

Attachment No.	Chain Number	A	D	E	F	Н	L	М	Ν	Р	T	Average Weight
\$2	X348, S348	2.19	0.41	-	0.63	2.25	-	0.44	2.63	-	0.25	0.8
	468, S468	2.69	0.56	-	0.75	2.91	-	0.75	1.50	-	0.31	1.9
S 2A	998, S998	4.00	0.56	-	0.75	5.28	1.75	0.75	2.13	1.53	0.31	8.8
\$22	X458, S458	2.25	0.56	1.38	0.63	3.19	2.00	-	-	-	0.31	2.0
	X678, S678	2.88	0.69	1.81	0.88	4.94	2.25	-	-	-	0.31	4.7
	998, S998	3.25	0.81	2.38	1.50	6.50	3.00	-	-	-	0.63	11
	9118, S9118	4.25	0.81	3.00	1.25	7.19	6.50	-	-	_	0.38	15

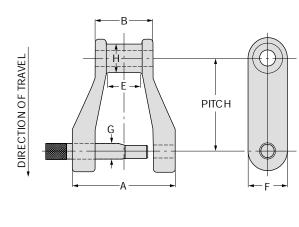
POLYMERIC CHAINS

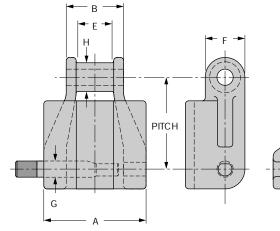

STRAIGHT RUNNING CHAINS

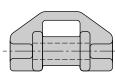
Design Features

Rex[®] straight running polymeric chains are designed specifically for those applications requiring corrosion resistant chains that operate over standard metal or polymeric sprockets.

The link material is a low friction thermoplastic that has proven itself as a chain material for over a decade. This material resists most chemicals, and because of its low friction characteristics, reduces energy consumption and noise while increasing chain, sprocket and conveyor wear strip life. Wide wearing surfaces on top and bottom of the link offer extended sliding wear life.


Chain pins are manufactured from stainless steel. The latest technology in chain design has been used to provide the greatest chain strength and wear life at a reasonable cost. The use of stainless steel pins with the corrosion resistant thermoplastic material offers a chain capable of withstanding most corrosive applications. Non-metallic pins are also available, contact Rexnord for details.




Design Benefits

- Simple Two Piece Construction Pins are easily assembled into links yet pins will not "work out" or rotate in service. No extra spring pins or cotters to fall out or snag conveyor apparatus. Every link is a "Master Link."
- Lightweight Less "dead weight" in your conveyor system will extend conveyor component life – longer chain life – longer conveyor "way" life – longer sprocket life – longer bearing life – longer reducer life – longer motor life!
- **Clean** In normal service, Rex Polymeric Chain will not corrode and contaminate the product. It is easily washed with water during operation, saving both time and money.
- **Completely Interchangeable** As a replacement for metal chains, Rex Polymeric Chain will run on existing carrying and return "ways," The chains will not intercouple with metal chains.
- Low Coefficient of Friction Rex chain materials have a very low coefficient of friction – this means less chain load and less energy consumption to convey the same tonnage.
- **Brute Strength** Rex Polymeric Chain has the highest possible working load. This is accomplished through "Balanced Design" of the link and pin. For a comparison to your current chain or for chain recommendations consult Rexnord.
- **Operating Range** Allowable temperature range of Rex Polymeric Chain is enough to handle most applications: -40°F to +180°F.
- Quiet Running Because of its unique design, the Rex Polymeric Chain is an ideal chain for reducing noise in many applications. Make your own test to prove if the noise level is adequate for your needs.

POLY MERIC CHAINS STRAIGHT RUNNING CHAINS

NHT78

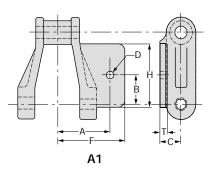
Dimensions are in inches. Strengths, loads and weights are in pounds.

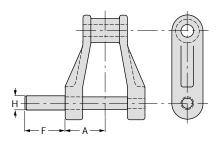
Rex Chain No.	Average Pitch	Overall Width	Length of Bearing	Max. Allowable Sprocket Face	Height of Sidebar	Link Thickness	Pins	Average Weight	Sprocket Unit No.	Bottom Sliding Area Sq. Inches Per Foot
		Α	В	E	F	J	G			
NH45	1.630	2.19	1.31	.75	.88	.31	.63	0.9	N45	8.8
NH77	2.308	2.19	1.31	.75	1.10	.38	.81	1.1	N77	10.4
NH78	2.609	2.91	1.63	.94	1.13	.44	.88	1.4	N78	11.5
NHT78	2.609	2.91	1.63	.94	1.69	.44	.88	2.0	N78	11.5
NH82	3.075	3.29	2.00	1.13	1.50	.50	1.25	2.2	N82	13.7

Chains are normally stocked. Chains are patented: #4682687 CAUTION: ANY UNUSUAL burrs, ridges or protrusions on sprocket teeth or in conveyor system which would cut into polymeric chains must be removed.

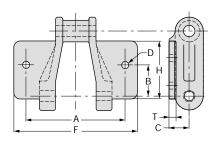
Specifications

FDA and USDA – Chain materials used are in compliance with FDA regulations and guidelines for use in direct food contact. Also, the chain materials have been found chemically acceptable for direct food contact with meat or poultry products by the Product Safety Branch of USDA. Also, the chain designs have been found acceptable for direct contact with meat or poultry products by the Equipment Branch of the Facilities, Equipment and Sanitation Division of USDA. **See pages 130-132 for important application information.**

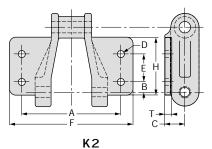

NOTE: The purpose of the table below is to account for cycles of load. This is an important consideration relating to fatigue and is critical to the successful application of chains made from any nonmetallic material.

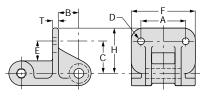

Ratio of Chain Speed (FPM)		Rated Work	ing Load – Pounds*	
to Sprocket Centers (FT)	NH45	NH77	NH78 & NHT78	NH82
01	800	1100	1750	2400
0.1	750	1050	1650	2250
Q 5	700	950	1350	2100
1.0	600	800	1100	1700
20	500	680	925	1400
50	400	540	750	1200
10.0	330	450	650	950

*Working load ratings for Polymeric Chains are established according to chain speed (FPM) and sprocket centers (FT).


■ POLYMERIC CHAINS – Attachments

STRAIGHT RUNNING CHAINS – ATTACHMENTS





D5, D6, D7, D8 & D9

K1

Dimensions are in inches. Strengths, loads and weights are in pounds.

Rex					DÛ						Link Weight	
Chain No.	A	В	С	Bolt Dia.	Bolt Hole	E	F	Н	Т	Weight	W/O Pins Per 100 Pieces	Per 100 Pieces
						A1						
NH45	1.63	.38	.69	1 /4	.28	_	2.00	1.47	.19	1.4	9	4.5
NH78	1.94	1.06	.81	1 /4	.28	-	2.50	2.31	.25	1.7	25	11.8
NH82	2.13	1.00	.88	¹ /4	.28	_	2.68	2.25	.31	2.4	44	17.8
						D5						
NH45	1.09	_	_		-	_	1.50	.31	_	1.1	7	7.7
						D6					-	
NH45	1.09	_	_		_	_	1.50	.38	_	1.2	7	9.2
NH77	1.09	_	_		_	_	1.50	.38	_	1.2	13	11.2
	1.00					D7	1.00	.00		1.0	15	11.2
NH45	1.09	_	_		-	_	1.50	.44	-	1.3	7	10.8
NH78	1.44	_	_		_	_	1.50	.44	_	1.3	20	18.2
NH82	1.66	_	_		_	_	1.50	.44	_	2.6	43	24.2
IIIIOL	1.00					D8	1.00			2:0	10	2112
NH45	1.00						1.50	50		1 5	7	12.0
NH45 NH78	1.09	-	_		-	-	1.50 1.50	.50 .50	-	1.5 1.8	7 20	12.8 20.1
NH82	1.44	_	_		-	-	1.50	.50	-	2.7	43	20.1
NIIOZ	1.00	_	_		_	D9	1.50	.50	_	Ζ.7	43	20.1
NUL 45	1.00						1.50	50		1.0	7	150
NH45 NH78	1.09	-	-		-	-	1.50	.56	-	1.6	7	15.0
NH78 NH82	1.44 1.66	-	_		-	-	1.50 1.50	.56 .56	-	1.9 2.8	20 43	22.4 28.3
NHOZ	1.00	-	_		-	- F2	1.50	.30	_	2.8	43	28.3
	0.00					_	0.00	0.00	05		0.5	11.0
NH78	2.03	.94	1.47	1 /4	.28	.90	2.90	2.06	.25	1.7	25	11.8
NH822 ²	2.22	1.25	1.91	1 /4	.28	1.25	3.28	2.50	.38	2.5	46	17.8
						K1						
NH45	3.25	.38	.69	¹ /4	.28	-	4.00	1.47	.19	1.2	12	4.5
NH78	4.00	1.25	.81	¹ /4	.28	-	5.00	2.31	.25	1.9	30	11.8
NH82	4.25	1.00	.88	¹ /4	.28	-	5.38	2.25	.31	2.6	49	17.8
						K2						
NH45	3.25	-	.69	1 /4	.28	.81	4.00	1.47	.19	1.2	12	4.5
NH78	4.00	.41	.81	1 /4	.28	1.13	5.00	2.31	.25	1.9	30	11.8
NH82	4.25	.34	.88	¹ /4	.28	1.31	5.38	2.25	.31	2.6	49	17.8

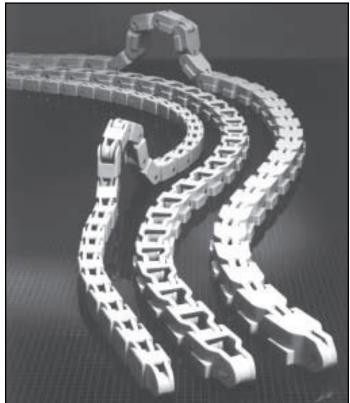
^① Style of hole: round. ^② Custom bolt-on attachment available – contact Rexnord.

A attachments are available right hand and left hand.

A, F, and K attachments are available blank (no holes), with holes as shown, or as required.

POLYMERIC CHAIN

DOUBLE FLEX CHAINS


Design Features

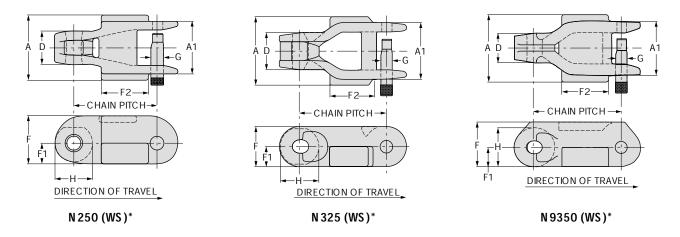
The Rex[®] Polymeric Double Flex Chains are designed for curved or straight unit handling conveyors. The chain will flex in the vertical and horizontal planes.

The chains are made from an exclusive low friction material that has proven itself as long wearing and shock resistant. With a stainless steel pin, the chains will not rust and will resist the same chemicals as acetal thermoplastic. Non-metallic pins are also available, contact Rexnord for details.

The latest technology in chain design has been used to provide the greatest chain strength and wear life at a reasonable cost.

Conveyor operators will appreciate the quiet running chains that reduce daily work area stress. Maintenance people laud the chain's light weight and ease of installation.

FDA and USDA – Chains materials used are in compliance with FDA regulations and guidelines for use in direct food contact. Also, the chain materials have been found chemically acceptable for direct food contact with meat or poultry products by the Product Safety Branch of USDA. Also, the chain designs have been found acceptable for direct contact with meat or poultry products by the Equipment Branch of the Facilities, Equipment, and Sanitation Division of USDA.


Design Benefits

- Simple Two Piece Construction Pins are easily assembled into links yet pins will not "work out" or rotate in service. No extra spring pins or cotters to fall out or snag conveyor apparatus.
- Lightweight Less "dead weight" in your conveyor system will extend conveyor component life – longer chain life – longer conveyor "way" life – longer sprocket life – longer bearing life – longer reducer life – longer motor life!
- **Clean** In normal service, chains will not corrode and contaminate the product. They are easily washed with water during operation, saving both time and money.
- Easy Maintenance Chains are engineered for ease of assembly or disassembly. Since it is lightweight, a 10 foot strand of N325WS weighs 12 pounds, so one person can handle routine maintenance.
- **Operating Range** Allowable temperature range of Rex polymeric chains is enough to handle most applications, -40°F to +180°F.
- **Completely Interchangeable** A replacement for metal chains. These chains will run on existing carrying and return "ways." Chains will not intercouple with metal chains and require proper care with catenary design consult Rexnord.
- Low Coefficient of Friction Rex chain materials have a very low coefficient of friction. This means less chain load and less energy consumption to convey the same tonnage.
- **Brute Strength** These chains have the highest possible rated Working Load. This is accomplished through "Balanced Design" of the link and pin. For a comparison to your current chain or for chain recommendations consult Rexnord.
- **Protects Conveyed Material** The polymeric chains will not damage most products.
- **Quiet Running** Because of its unique design, these chains are ideal for reducing noise in many applications... make your own test to prove if the noise level is adequate for your needs.

POLYMERIC CHAIN

DOUBLE FLEX CHAINS

See pages 130-132 for important application information.

Dimensions are in inches. Weights are in pounds.

ſ				Overall Width		Max.		Wear	Shoe	Diameter		Minimum		Bottom Sliding
	Rex Chain No.	Average Pitch	With Wear Shoes	Without Wear Shoes	Length of Barrel	Allowable Sprocket Face	Height of Sidebar	Height	Length	of Pin or Rivet	Diameter of Barrel	Flex Radius	Average Weight	, v
			Α	A1	D		F	F1	F2	G	Н	R		
ľ	N250(WS)	2.500	1.94	1.56	1.00	.75	1.44	.63	1.41	.38	1.13	20	0.9	2.1
	N325(WS)	3.268	2.56	213	1.38	.63	1.50	.75	1.63	.44	1.44	24	1.2	3.2
	N9350(WS)	3.500	266	213	1.16	.81	1.75	.75	1.84	.44	1.50	24	1.8	4.2
	*Note:WSve	ersion has	wear shoes.	Chains are r	normally sto	ocked. Cha	ins travel ope	en end forv	vard. Cha	ins are pater	nted: #4682	687		

CAUTION: ANY UNUSUAL burrs, ridges or protrusions on sprocket teeth or in conveyor system which would cut into polymeric chains must be removed.

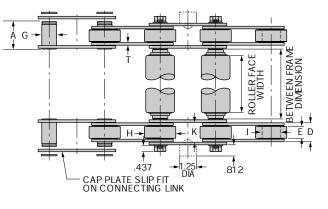
	Dimensions are	in males. weigh	are in pounds.						
Ratio of C hain S peed (FPM) to S procket	Rated Working Load - Pounds*								
Centers (FT)	NH 250(WS)	NH 325(WS)	NH9350(WS)						
0.1	800	1500	1875						
0.2	750	1500	1875						
0.5	700	1250	1565						
1.0	600	1030	1290						
20	500	850	1065						
5.0	400	650	815						
10.0	330	540	675						

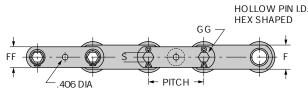
Dimensions are in inches Weights are in pounds

*Working load ratings for Polymeric Chains are established according to chain speed (FPM) and sprocket centers (FT).

NOTE: The purpose of the table to the left is to account for cycles of load. This is an important consideration relating to fatigue and is critical to the successful application of chains made from any nonmetallic material.

LIVE ROLLER CHAIN


NOW MANUFACTURED AT THE ENGINEERED CHAIN OPERATION!


Rex[®] Live Roller Conveyor Chains are precision conveyor carrier roller chains which may be combined with quiet running Rex Whisperol polymeric rollers or with standard hexagonal axle conveyor rollers.

The conveyor chain's special Rexnord engineered hexagonal shaped hollow pin allows the chain to accept standard size hexagonal axles offered on conveyor rollers.

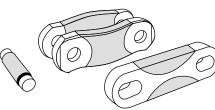
The combination of precision conveyed carrier roller chain and the free turning conveyor rollers produces a heavy duty roller flight conveyor which can be used as an accumulating and minimum pressure conveyor. The combination of Rex live roller conveyor chain with conveyor rollers is ideally suited for conveyor lines handling items which must be blocked, stopped or accumulated without stopping the conveyor.

The conveyed object, which is carried directly on the conveyor rollers, can be halted for accumulation, assembly or inspection at any location on the conveyed line. Because the conveyor rollers are free turning, line pressure is held to a minimum allowing fragile items, such as furniture, sub-assemblies, and light cartons, to be conveyed or accumulated without fear of damage.

Rex	Average	Rated	Average				Between		-Harden mess		ebars ight		urized ns	Carbi Rol	urized lers	Carbu Bush		Sprocket
Chain No.	Pitch	Working Load	Weight	Pin	Center Line	Center Line	Sidebar	Pin Link	Roller Link	Pin Link	Roller Link	0. D.	Hex	Face Width	0. D.	Length	0. D.	Unit No.
				Α	В	C	K	Т	TT	FF	F	G	GG	E	Н	D	I	
RF 3007	3.000	4,000	3.9	1.78	.94	.81	1.18	.16	.19	1.13	1.31	.75	7/16	.75	1.75	1.16	.94	RF3007
RF 4007	4.000	4,000	3.4	1.78	.94	.81	1.18	.16	.19	1.13	1.31	.75	7/16	.75	1.75	1.16	.94	RF4007
RF 3011	3.000	5,000	69	213	1.16	.97	1.41	.19	.19	1.50	1.75	1.06	¹¹ /16	.97	2.25	1.38	1.31	RF3011
RF 4011	4.000	5,000	5.7	213	1.16	.97	1.41	.19	.19	1.50	1.75	1.06	¹¹ /16	.97	2.25	1.38	1.31	RF4011

NOTE: Shaft extension for any live roller chain is A + 0.437. Chains are normally in stock.

Sidebars are thru-hardened; bushings are carburized.


■ DOUBLE FLEX CHAIN

3500 STEEL DOUBLE FLEX CHAIN

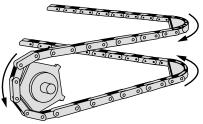
Fabricated steel 3500 chain is designed to operate in either direction. This feature plus its ability to flex in two planes, and its excellent wear durability, makes it popular for a wide range of applications in the unit handling industry.

Induction Hardening

Pin bearing

surfaces and all sliding surfaces are induction hardened.

Selective hardened areas provide long life, yet leave tough chain with high strength to handle big loads.

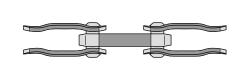

Shielded Rivets

Cupped configuration on the outer sidebar both protects and shields rivet ends, as well as provide

relief for side-flex. No rivet wear prevents the possibility of disassembly while in operation.

Beveled Block Link

The 3500 block link is beveled to provide additional protection for conveyors handling plastic cases.

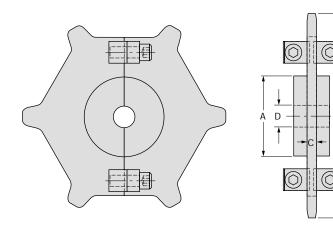


Large Sliding Area

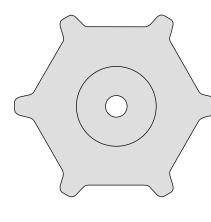
3500 Double Flex Chain presents solid, substantial sliding surfaces to channel tracks.

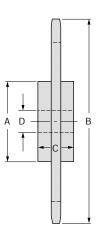
Nearly 50% greater sliding bearing area than dropforged chain results in lower sliding bearing pressure, thus decreasing wear on chain and channels. Again, increased chain life, lower chain replacement costs.

Make multiple turns in one run, saving on transfer points. It flexes around 20" radius corners, assuring more compact plant layouts.

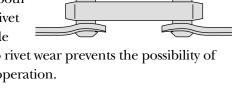


Fewer terminal units mean lower cost installations, easier maintenance.

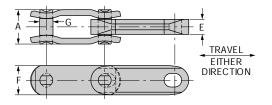

3500 Fabricated Steel Sprockets


These sprockets can be furnished split, solid and bronze bushed. Heat treated keys are recommended.

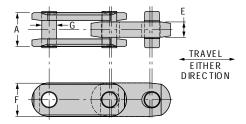
Flanged idler wheels available, specifications and price on application.

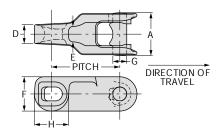

B

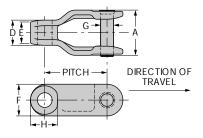
Dimensions are in inches. Weights are in pounds.


	No. of Pitches	Pitch	Hub Diam.	Outside Diam.	Hub ^① Length	Max. KS Bore ⁽²⁾	Approx. Ea	
Teeur	FILLIES	Di aiti.	A	В	С	D	Split	Solid
5	10	8.90	4.00	9.75	2	2.44	14.5	12.5
6	12	10.63	4.50	11.50	2	2.69	20.5	18.5
7	14	12.36	5.00	13.31	2	2.94	25.5	23.5
8	16	14.10	5.00	15.25	2	2.94	31.0	29.0
9	18	15.84	5.00	16.88	2	2.94	38.5	36.0

^① Overall width of split sprocket is 2⁵/8 inches.
 ^② Stock bore is 1¹/4 inches.




■ DOUBLE FLEX CHAIN


3500 S teel C hain

3498 S teel C hain

9250 Cast Chain

SM120CastChain

Rex Chain No.	Average Pitch	Rated Working Load ^①	Overall Width	Length of Barrel	Max. Allowable Sprocket Face	Height of Sidebar	Diameter of Pin or Rivet	Barrel	Flex Radius	Average Weight	Sprocket Unit No.
			A	D	E	F	G	Н	R		
3500 2	2.5 ³ 3.0	See Table Below	1.50	-	.63	1.25	.56	-	20	3.3	3500
9250	2.5	900	1.56	.69	.75 [@]	1.25	.50	1.25	18	3.3	9250
SM120	2.5	1,100	1.78	1	.75 [@]	1.25	.50	1.13	36	3.6	9250
3498	1.75 2.5®	See Table Below	1.44	-	.63	1.38	.63	-	16	4.5	3498

Ratio of Chain Speed (FPM) to	Rated Working	Load – Pounds
Conveyor Length (Ft)	3500 Chain	3498 Chain
0.1 to 0.6	4000	5000
1.0	3400	4250
1.5	2900	3650
20	2600	3250
2 5	2300	2850
3.0	2100	2600
3.0 to 15.0	2100	2600

 $^{(1)}$ Refer to page 151 for use of "Rated Working Load" in conveyor chain selection. $^{(2)}$ W hen chain is to be run in channel, 2" x1" x3/16" (2.32 lbs. per foot), standard bar

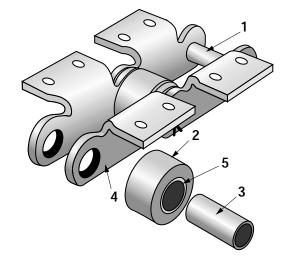
channel is suggested. B lock link is 3-inch pitch and outside link is 2¹/2" pitch. Face on drive side of tooth.

⁽⁵⁾ B lock link is 1.75" pitch and outside link is 2¹/₂" pitch.

Note: For ratios below 0.1 and above 15.0, consult Rexnord for recommended rated working load.

In applications without static operating conditions (shock loads), a service factor must be applied to provide for dynamic fluctuations. S peed Factors are found on page 153 or contact R exnord. D esign W orking Load = $P_m x S$ ervice Factor x S peed Factor.

LF (LOW FRICTION) BUSHED CHAIN


Developed initially for the meat industry, the rollers of this engineered steel conveyor chain are bushed with acetal thermoplastic to resist corrosion and reduce rolling friction by 40%.

Improved Handling - The extremely low friction of LF bushed rollers on either stainless or carbon steel chain bushings minimizes pulsating action on long slow-moving conveyors.

Saves Power - Because of low coefficient of rolling friction LF bushed rollers drastically reduce horsepower requirements, thereby reducing operating costs. No Lubrication - Built in self lubricating properties of this material assures smooth trouble free operation under dry conditions.

Cleaning – LF bushed rollers may be safely applied in applications where steam or commercial cleaning agents are required.

- 1. Pins are case hardened steel with three (3) diameter construction for easier assembly, disassembly.
- Rollers are case hardened steel and have low-friction 2. bushed surface for smooth, long-life performance.
- 3. Chain bushings are of stainless steel, heat treated for extra corrosion and wear resistance. Carbon steel bushings available where corrosion is not a threat.
- Sidebars are accurately punched for good pitch 4. control. Chain can be galvanized, or provided with other coatings for added corrosion resistance at slight additional cost.
- 5. LF materials resist corrosion and wear, have low friction: require no lubrication.

	Dimensions are in inches. Loads and weights are in pound									e in pounds.				
_	Avorago	Rated	Max.		Pin		Sidebars	_	Pins	Rol	lers	Bush	nings	
Rex Chain No.	Average Pitch	Max. Load ^①	RPM 12T Spkt.	MUTS x 10 ³	Length	Between	Thickness	Height	Diam.	Face Width	0. D.	Length	0. D.	Sprocket Unit No. ②
			-1		Α	К	Т	F	G	E	Н	D	Ι	
BA3420	4.04	3,150	75	23	3.25	1.25	.31	1.50	.63	1.94	2.00	1.94	.94	1113
SRD196	6.00	1,950	40	18	2.72	1.13	.25	1.50	.44	1.06	2.00	1.69	.63	196
SRH1114	6.00	3,150	40	23	3.25	1.31	.31	1.50	.63	1.19	2.00	1.94	.94	196
BA1670	6.00	3,150	40	23	3.25	1.31	.31	1.50	.63	1.19	2.25	1.94	.94	2180

^① Refer to Engineering Manual for use of 'Rated Working Load' in conveyor chain selection.

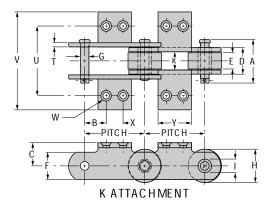
⁽²⁾ Fabricated steel sprockets are recommended.

72

LF (LOW FRICTION) BUSHED CHAIN

The configurations shown are versions commonly used in the meat industry:

Pins and rollers are case hardened (carburized).


Sidebars and chain bushings are thru-hardened. Roller bushings are LF Acetal.

Pins, rollers and sidebars are galvanized, and chain bushings are stainless steel.

For a greater degree of corrosion resistance, these chains are available with the following optional finishes: Sidebars can be provided with an optional coating for a higher level of corrosion resistance. Pins and rollers can be electroless nickel plated (ENP).

LF bushed chains are available for other applications.

ATTACHMENTS

Dimensions	are in inches.	Loads and	l weiahts	are in pour	ıds.
			· · · · · · · · · · · · · · · · · · ·		

Rex Chain No.			вх		x v		Wgt. Per Ft.		
w/K-Attachment Every Pitch	U	V	Bolt Dia.	Bolt Hole	В	X	Ŷ	С	K-Attachment Every Pitch
BA3420-K28	4.13	5.93	3/8	.41	1.27	1.50	2.75	1.25	11.0
SRD196-K201	4.00	5.66	7/16	.50	2.00	2.00	3.50	1.25	7.5
SRH1114-K28	4.00	5.38	³ /8	.41	2.00	2.00	3.50	1.12	10.7
BA1670-K241	4.06	5.31	¹¹ /16	.78	2.00	2.00	3.50	1.38	11.2

① A ttachment holes are countersunk.

CHAIN INTERCHANGE

The following tables can be used to interchange Rex[®] and Link-Belt[®] chains Details on chains included in the listings can be found in the Engineered Steel and Cast Chains sections of this catalog. To interchange Drive Chains see pages 34-35. To interchange Standard Series Cast Combination Chains see page 53 In some cases, Rex and Link-Belt brands may couple - but this should not be assumed. Attachments should be compared by catalog data rather than number. For interchange verification or assistance, contact Rexnord.

Chains are listed in numerical order. To find the desired chain follow down the first column to the number of the chain to be replaced.

REX TO LINK-BELT INTERCHANGE

Rex Chain No.	Link-Belt Chain No.	Catalog Page	Rex Chain No.	Link-Belt Chain No.	Catal og Page	Rex Chain No.	Link-Belt Chain No.	Catalog Page
4	RS4019	10	531	RS4328	10	FR1222	SS1222	13
6	RS6238	11	RR 588	R S 887	10	FR1233	SS1233	13
81X	RS81X	10	RR778	R S 886	10	C1288	SS1088	10
81XH	RS81XH	10	SR844	SBS844	14	1535	SBS 2162	14
81XHH	RS81XHH	10	R0850	SB0850 Plus	14	1536	SBS1972	14
\$102B	SBS102B	14	R\$856	SBX856	14	1539	RS1539	10
S102.5	SBS102.5	14	ER 857	SBX 2857	14	BR 2111	RS944 Plus	11
S110	SBS110	14	ER 859	SBX 2859	14	A2124	R\$996	11
ES111	SBS111	14	ER 864	SBX 2864	14	2126	RS1116	11
S131	SBS131	14	ER911	RS911	12	2183	RS 951	11
SX150	SBS150 Plus	14	ER 922	SS927	12	FX2184	R02184	11
SR183	RS 301 3	10	FR922	SS922	12	2188	RS 2188	10
S188	SBS188	14	FR 933	SS933	12	2190	RS 21 90	11
SR194	RS4216	10	SR1114	RS1114	11	A2198	RS 960	11
SR196	R\$6018	11	RR1120	R \$ 401 3	10	3420	RS1113	10
270	SS2004	10	RS1131	R\$1131	11	X4004	RS4852	12
RR 362	R\$625	10	E1211	R\$1211	13	R 4009	RS 4851	12
RR 432	RS627	10	ER1222	SS1227	13	4065	RS 4065	12

LINK-BELT TO REX INTERCHANGE

Rex Chain No.	Link-Belt Chain No.	Catalog Page	Rex Chain No.	Link-Belt Chain No.	Catalog Page	Rex Chain No.	Link-Belt Chain No.	Catalog Page
RS81X	81X	10	SS922	FR922	12	SS2004	270	10
RS81XH	81XH	10	SS927	ER 922	12	SBS 2162	1535	14
RS81XHH	81XHH	10	SS933	FR933	12	RS 2188	2188	10
SBS102B	S102B	14	RS944 Plus	BR 2111	11	RS2190	2190	11
SBS102.5	S102.5	14	RS951	2183	11	R02184	FX2184	11
SBS110	S110	14	RS960	A2198	11	SBX 2857	ER857	14
SBS111	ES111	14	R S 996	A2124	11	SBX 2859	ER 859	14
SBS131	S131	14	SS1088	C1288	10	SBX 2864	ER 864	14
SBS150 Plus	SX150	14	RS1113	3420	10	R \$ 301 3	SR183	10
SBS188	S188	14	RS1114	SR1114	11	RS4013	RR1120	10
RS625	RR 362	10	RS1116	2126	11	RS4019	4	10
RS627	RR 432	10	RS1131	RS1131	11	RS 4065	4065	12
SBS844	SR844	14	R\$1211	E1211	13	RS4216	SR194	10
SB0850 Plus	R0850	14	SS1227	ER1222	13	RS4328	531	10
SBX856	R\$856	14	SS1222	FR1222	13	RS 4851	R 4009	12
R \$ 886	RR778	10	SS1233	FR1233	13	RS4852	X 4004	12
R S 887	RR 588	10	R\$1539	1539	10	RS6018	SR196	11
RS911	ER911	12	SBS1972	1536	14	R\$6238	6	11

SPROCKET TYPES

Sprockets can be supplied in various materials and styles, depending upon the application and severity of service requirements. For most engineered chain applications, fabricated steel sprockets are recommended as offering the best combination of performance, availability, and price. Fabricated steel sprockets can be provided for every chaintooth combination and are readily available.

SPROCKET STYLES

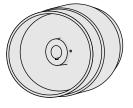
Cast Arm Body – This type of sprocket is generally used where larger sizes are required. The use of arms reduces weight, facilitates handling, and lowers cost.

Cast Split (Arm or Plate) Body – The split body design facilitates mounting and removal from shafts without disturbing bearings or other connected equipment, which greatly reduces installation and downtime.

Cast Plate Body – Plate bodies are generally required for the smaller sizes where the use of arms is impractical, and on larger sizes when the chain pull exceeds the strength of the arm body sprockets.

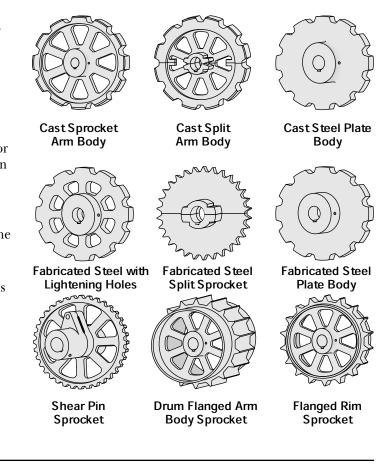
Fabricated Steel Sprockets – Fabricated steel sprockets are flame cut and manufactured from plain carbon steel. The teeth are flame or induction hardened.

Shear Pin – A sprocket is modified by the addition of shear pin hubs and shear pins. They are used in applications where jamming or overloading is prevalent. The shear pins are designed to transmit the required torque under normal operating conditions, but to fail when an overload or jam occurs, thus protecting machinery and equipment from damage.


Special Sprockets – Sprockets can be made of special design, such as flanged-rim (used particularly in the rock products and fertilizer industries). Long-tooth or gapped-tooth sprockets can also be made.

SEGMENTAL SPROCKETS AND TRACTION WHEELS

Can be supplied with either solid or split bodies, and have removable and replaceable sprocket segments or traction wheel rims. Rims are made of specially hardened steel for superior wear resistance. Accurate machining and precisely drilled holes permit sprocket segments to be reversed, thus doubling sprocket life and minimizing downtime.


TRACTION WHEELS

Primarily designed for single-strand bucket elevator service, traction wheels can also be used on other type conveyors providing the coefficient of friction is sufficient under normal load to allow the traction wheel to drive the unit. A distinct advantage of a traction wheel is

Sprockets can also be supplied in various cast materials, with or without hardened teeth. The cast sprocket tables present the available patterns for producing cast sprockets.

Whatever the types selected, our sprockets are designed for proper chain-sprocket interaction. Rexnord engineers have selected the proper tooth pressure angle, pitch line clearance, bottom diameter and tooth pocket radius for optimum performance and service life.

Segmental Sprocket with Split Body

Segmental Traction Wheel with Split Body

that the chain will slip on the wheel in the event of an obstruction or overload, thereby preventing damage to elevator or conveyor components. Traction wheels are ideal for service in abrasive environments since there is less scrubbing of the chain on a traction wheel as compared to sprocket.

SELECTION, SPECIFICATION AND ORDERING INFORMATION

Number of Teeth

Sprockets preferably should have no less than 12 teeth, particularly if speeds are high and the chain loads great. Sprockets having less than 12 teeth should be adapted only to slow and medium speeds. The number of teeth and sprocket speed (revolutions per minute) control the amount of impact of the chain seating on the sprocket. Impact is reduced as the number of teeth is increased or as speed is decreased. Likewise the chain pull is reduced as the sprocket size is increased for any one power drive. Consequently, a lighter chain – for greater economy – may often be used. With a greater number of teeth angular motion or friction in the chain joints is reduced.

Height of Teeth

Height of teeth of standard sprockets is generally based on providing a working face what will accept the maximum possible amount of wear elongation combined with a smooth topping curve. A further limitation that takes precedence over the above is that when a sprocket series is capable of being used with chains designed for conveyor/elevator service, the top of the tooth of all standard sprockets having ten or more teeth is designed to be low enough to clear a slat or carrier mounted on the lowest possible "K" attachment of any chain using sprockets of that series.

As a precaution, it is recommended that orders for sprockets specify whether it is necessary for the top of the tooth to clear any slat, bucket or carrier mounted to a chain attachment, or welded to the chain.

Bore and Hub Size

The size of the bore and hub are determined by the torque to be transmitted. The hub specification charts included in this catalog provide selections based on a design shear stress of 6000 psi, maximum.

Gapped Sprockets

Some attachments require gapped sprockets to avoid interference between the sprocket and chain or assembled fittings. Such attachments usually are those wherein the space between side bars is utilized by the attachment or its fitting. The gap spacing must be a multiple of the particular attachment spacing in the chain, also of the number of teeth on the sprocket. When some teeth must be topped off (that is, omitted) – as distinguished from gaps that extend within the root diameter, it will be assumed that topping off the teeth flush with the root diameter will suffice to clear the obstruction. If gaps are required, complete details must accompany the order.

HEAT TREATMENT

Fabricated steel sprockets are normally supplied with induction hardened teeth. Cast sprockets, if hardened, are either induction hardened or cast as chill iron. The catalog cast sprocket tables identify cast sprockets with hardened teeth.

Rexnord takes an extra step when heat treating segmental sprockets and tractions wheels to provide the utmost in hardness and case depth.

Prior to induction hardening, segmental rims are "soaked" with carbon in large carburizing pits specifically designed for this purpose. The carburizing process provides deep penetration of carbon into the segment's working surfaces, thereby increasing its hardenability.

After the carburizing process, the segments are taken to Rexnord's induction heat treat area where the segments are enveloped in a large electrical coil, heated to a "cherry red", and quickly quenched. This final process produces the hardest, deepest cases available in an engineered sprocket or traction wheel today.

The carburizing/induction heat treatment process is standard for most all of our segmental sprockets and traction wheels. If you have a very severe sprocket wear problem this may be the answer – contact Rexnord to find out if it is available for your particular sprocket type because not all sizes and styles are available.

Relative depth of hardened material developed from flame, induction or chill rim hardening methods. Relative depth of hardened material developed through the two-step carburizing/ induction hardening process used in our segmental sprockets and traction wheels. Wbre hardened material means longer sprocket and chain life!

SPROCKETS

SELECTION, SPECIFICATION & ORDERING INFORMATION – (Cont'd.)

Web Holes

Large plate or web-body sprockets can be furnished, when specified, with holes for hoisting slings or hooks. Such holes may necessitate an extra charge.

Weights

Listed weights represent averages only and may differ from those of the sprockets furnished, because of the differences in hub sizes. Average weights do not necessarily indicate the relative strengths of the various sprockets. They are given primarily for estimating shaft loads and freight charges. All weights are based on arm body construction.

Style Plate-Body or Arm-Body Construction

It will be noted that the smaller sprockets in each series (both stock and order-size) are furnished only with plate-body. Lack of space between the hub and the sprocket rim makes it impractical to furnish these sprockets with arm-body construction. All stock and order sizes will be furnished plate body. For arm body design, consult Rexnord.

Hubs

All hubs are furnished long central (style C) unless specified by the customer or if footnoted in the tables. Depending on how mounted, offset hubs or flush one side (style B) may be preferable for driver sprockets mounted on gearbox output shafts. Offset hubs are where hubs are not of equal length. If other than long central hubs are desired, be sure to specify this on the order.

All hubs are given a squaring cut, (faced) then sprockets are finish bored. Facing is provided as follows:

	CAST HUBS	FABRICATED HUBS
Long Central	Faced 1 side	Faced both sides
Flush one side	Hub faced	Hub faced
Offset hubs	Faced both sides	Both hubs faced

Bore

Sprockets are bored to commercial tolerances (see table below) Closer tolerances are available at extra cost.

BORE RANGE	TOLERANCE (INCES)
Up thru 2.000	+.001/+.003
Over 2.000 thru 4.000	+.001/+.004
0 ver 4.000 thru 6.000	+.001/+.005
Over 6.000	+.001/+.006

Keyseat and Keyscrews

Standard straight keyseats on the centerline of a tooth are finished with one setscrew over the keyseat and one at 90°.

Multiple Sprocket Alignment

On a multiple strand conveyor or elevator, it is important that driving sprockets teeth be properly aligned in service. It is recommended that drive sprockets be ordered in sets with keyseats properly located relative to the teeth. Sprockets ordered as matched sets will be match marked. Sprockets are to be installed such that all match marks face the same end of the shaft.

At the tail end of a multiple strand conveyor, only one sprocket should be fixed (keyed or set screwed) to the shaft. The remainder of the tail sprockets should be allowed to turn freely on the shaft to compensate for differences in strand length that may change over time.

• Sprockets with Hubs Central

Order should specify "Matched in Sets of Two," "Matched in Sets of Three," etc.

• Sprockets with Unequal Hubs

If sprockets will be installed with like hubs all facing the same end of the shaft, the order should specify "Matched in Line."

If sprockets will be assembled with like hubs facing opposite ends of the shaft, the order should specify "Matched in Pairs."

Sprocket Availability

Fabricated Steel sprockets (split or solid) are readily available and most any sprocket design can be provided. For the quickest possible delivery, Rexnord maintains an inventory of plates and hubs for many commonly used sprockets.

Cast sprockets with solid hubs are stocked and identified in the cast sprocket tables. The stocked sprocket is bored and keyed to order. Split sprockets, sprockets with hub dimensions other than shown, or sprockets with any other non-standard feature are available but must be cast to order. If delivery is an important factor, fabricated steel sprockets are recommended.

SELECTION, SPECIFICATION & ORDERING INFORMATION – (Cont'd.)

How To Order

- 1. Quantity Number of sprockets required.
- 2. Sprocket Unit Number and Chain Number Refer to the chain and sprocket index.
- 3. Teeth –

Number of teeth on sprocket.

4. Material -

Cast or fabricated steel should be specified. Standard materials will be provided unless specified.

5. Heat Treatment –

Fabricated steel sprockets will have induction hardened teeth. Cast sprockets will have hardened teeth if specified in the cast tooth sprocket tables. Specify any non-standard heat treatments.

6. Hub Construction –

Hubs will be provided as standard with solid hubs, long central (Style C) unless specified otherwise. Refer to page 79 for standard hub specifications.

7. Hub Size – CAST SPROCKETS:

Stocked cast tooth sprockets are listed in the tables with hub dimensions and a maximum bore. Sprockets with hub or bore dimensions other than as shown require a CAST TO ORDER sprocket. These special sprockets are available but if lead time is a factor, consider using a fabricated steel sprocket which is more readily available.

If no hub size is specified by the customer, the standard hub will be provided unless the shaft exceeds the maximum allowable bore, in which case a cast to order sprocket will be necessary.

For CAST TO ORDER sprockets: If no hub size is specified, a hub will be selected appropriate for the shaft size and most readily available from the foundry.

If desired, hub sizes may be specified on CAST TO ORDER sprockets, refer to the selection procedures on pages 81-82.

Hub Size – FABRICATED STEEL SPROCKETS

For fabricated steel sprockets, most any size hub is readily available. When delivery is especially critical, standard hub sizes are recommended. Standard fabricated steel hubs as shown in the table on page 79 will be provided unless specified on the order.

8. Bore –

Specify size and type of bore. Standard tolerances will be provided unless specified.

9. Keyseat and Setscrews -

A keyway with two setscrews will be provided on all sprockets unless specified otherwise.

10. Previous Order or Quotation -

Provide information regarding previous order or quotation to assure compliance.

11. Gapped Sprockets -

Specify chain attachment used and spacing.

12. Drop Forged Chain Sprockets -

Specify number of actual teeth.

13. Shear Pin Sprockets -

Specify torque level sprockets should shear. A bore size must be specified.

FABRICATED STEEL SPROCKETS

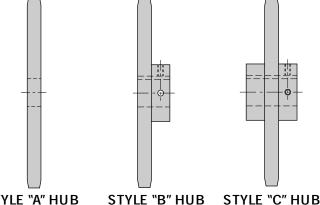
Listed below is the plate thickness for each sprocket unit. Refer to chain and sprocket index to determine proper unit number for each chain.

All sprockets are readily available as fabricated steel. Fabricated assemblies for traction wheels, drum flanged, sprockets, and for wide mill chain sprockets are also readily available.

PLATE SIZE

Sprocket Unit No.	Plate Width Inches	Sprocket Unit No.	Plate Width Inches	Sprocket Unit No.	Plate Width Inches
4	.63	698D	1.25	X1365	275
6SP	1.13	710	2.25	1535	1.00
25 ^①	.38	720S ^①	1.13	1536	1.25
32 ⁰	.50	C\$7205 ^①	1.13	B1537	1.25
34	.50	A730 ¹	1.13	1568	1.25
42 ¹	.56	CS730 ¹⁰	1.13	1604	.88
45 [©]	.63	823 ⁰	1.13	1654	200
51 [®]	.56	825 ⁰	1.25	E1822	1.75
S 51 [®]	.56	830 ¹	1.25	F1822	1.00
52 ¹	.63	833	2.25	F1833	1.25
55 ^①	.63	8440	2.25	E1836	200
57	.63	847	1.75	F1844	1.50
D600	.88	R0850	2.00	F1855	1.50
H60	.63	SX850	200	1903	3.00
RS 60	1.12	856	2.75	2047	1.25
620	.75	859	3.25	2064	2.25
64S ^①	1.25	RS 860	1.75	2111	1.25
67 ^①	.63	864	3.25	2113	1.12
78©	.88	SX877	2.50	2124 [®]	1.25
H78 ^①	1.00	SX886	2.25	2136	1.75
102B ¹	1.75	E922	1.75	2180 [®]	1.13
102-1/20	1.75	E911	1.25	F2183	1.00
1030	1.13	F922 ¹	1.13	2198	1.25
106	1.75	E928	1.75	2231	.63
110 ¹	1.75	E933	2.00	2236	1.75
111SP	2.25	F933 [®]	1.25	2342 [®]	1.50
1110	2.25	S 951	1.00	2348 ^D	1.25
114	1.13	9520	.63	2397	1.75
1190	3.50	953	1.25	2405	1.50
SM1201	.75	958	275	2452	2.50
H124 ^①	1.50	984	3.50	2590	250
1 30 ¹	1.00	998 ¹⁾	1.25	2614	2.25
131T ¹	1.50	1030	1.25	2800	1.50
1320	275	1036	1.25	2804	3.00
R133	1.25	10390	1.50	2806	4.00
152	.75	1112	.88	2848	1.75
1830	.75	1113 ⁰	1.13	2858	1.75
SX175	275	1120 ^①	.75	2868	1.75
183 ^①	.75	1124	.88	RF3007	.63
188	1.00	1131 [®]	1.25	RF3011	.88
194 ^①	1.00	1204	2.00	3112	1.00
196 ⁰	1.00	1207	225	3125	1.25
1970	1.13	E1211	1.25	D 31 25	1.25
238	1.25	E1222	1.75	3285	1.75
270	1.00	F1222 [®]	1.00	3433	1.75
303	.38	F1232	1.25	4004	2.25
X345 348 ¹	1.75 .63	E1233 F1233	2.00 1.25	4005 RF4007	1.13 .63
348 ⁰ 458 ⁰	.88	1240	1.25	4009	.63
4580 4680	1.50	E1240	2.25	4009	2.75
408 ⁹ 501	.75	FR1244	1.50	4010	2.75
501					
	.75	1251	1.75	RF4011	.88
508 514	.88 1.25	1301 R01305	2.50	4038	1.25
			225	4539	1.25
520	.88 .75	1306	2.50 2.75	4855	225 2.75
A522 S 521	.75 1.25	1 307 A1 309	2.75	5157 5208	2.75
531 [®]	1.25	X1309	2.75	6065	2.50
CA550	.63	AX1311 AX1338	1.25	6121	2.50
568	1.25	X1343	1.25	6826	2.00
584	1.25	X1345	1.50	7539	1.25
589	1.13	X1343	1.75	8755	2.75
CA620	.88	X1353	2.00	9118	1.75
635	1.75	R01355	2.00	9250 ²	.75
678 ⁰	1.13	R01356	250	9856	2.50
0.0					<u> </u>

Sprocket Weight


Total Sprocket Weight = [.22 (PD)2 PW] + W

PD = Pitch Diameter of Sprocket

PW = Plate Width of Sprocket (See table at left)

W = Hub Weight (See table below)

Calculated weight is an approximate to be used for estimating shaft loads and shipping weights.

STYLE "A" HUB TABLE INSTRUCTIONS

When using the tables below, and only the torque or Hub Size Letter is known, locate the appropriate row which will give you the recommended bore and hub size based on the limitations of typical SHAFT material having a maximum torsional shear stress of 6,000 psi.

If the shaft size is known, use the bore diameter column to find the recommended hub dimensions.

SOLID HUBS

Dimensions are in inches. Strengths and weights are in pounds.

Bore ^① Diameter	Hub ^② Letter	Maximum ³ Torque	Hub Diameter	Length ^④	Weight [®]
¹⁵ /16	В	1.0	2.50	1.50	1.0
1 ³ /16	С	2.0	2.50	1.50	1.0
17/16	D	3.5	2.50	1.50	27
1 ¹¹ /16	E	5.6	3.00	1.50	3.7
1 ¹⁵ /16	F	85	3.00	1.50	3.7
23/16	G	12.5	3.50	2.00	6.0
2 ⁷ /16	Н	17.0	4.50	2.00	100
2 ¹¹ /16	I	23.0	4.50	200	10.0
2 ¹⁵ /16	J	30.0	4.50	2.00	100
3 ³ /16	K	38.0	5.25	3.00	20.0
37/16	L	47.0	5.25	3.00	20.0
311/16	М	60.0	6.00	3.00	26.0
3 ¹⁵ /16	N	70.0	6.00	3.00	26.0
47/16	0	100.0	7.25	4.00	46.0
4 ¹¹ /16	-	120.0	7.25	4.00	46.0
4 ¹⁵ /16	Р	140.0	7.25	4.00	46.0
5 ⁷ /16	Q	190.0	8.75	5.00	85.0
5 ¹⁵ /16	R	245.0	8.75	5.00	85.0
6 ¹ /2	S	320.0	9.50	6.50	115.7

SPLIT HUBS

Dimensions are in inches. Strengths and weights are in pounds.

Bore Sizes	Maximum Torque	Hub Length	Bolt Clearance Diameter	Weight
1 ¹⁵ /16 - 2 ¹⁵ /16	30	2.88	7.50	20.0
3 – 3 ¹⁵ /16	70	2.88	8.75	27.0
4 – 4 ¹⁵ /16	140	3.88	10.75	57.0
5 – 5 ¹⁵ /16	245	4.88	11.50	80.0

© See instructions above.

Bub letter – From Drive Chain Selection tables.

In-Lbs. (in thousands)

I Add plate thickness for length through bore (see table at left); Hubs furnished long central unless specified by customer.

Weight shown for solid hub. Actual weight should be reduced by bore.

^① Available in cast, see pages 81-88.

[®] Available in cast or polymeric, see pages 81-88 and 94-98.

FABRICATED STEEL SPROCKETS AND OCTAGONAL TAIL WHEELS FOR HEAVY DUTY WELDED STEEL DRAG CHAINS

Drive Sprockets

Rex Unit Number	Number of Teeth	Pitch Diameter	Outside Diameter	Tooth Width "T" Inches	"T" Average Plate Only Weight Lbs.
	6	12.10	12.10		93
	7	13.94	14.11		127
	8	15.81	16.13		166
51 57	9	17.69	18.16	2.75	209
	10	19.58	20.18		256
	11	21.47	22.20		308
	12	23.38	24.22		365
	8	23.50	23.94		360
61 21	9	26.30	26.95	3.50	440
	10	29.12	29.96	3.50	550
	11	31.95	32.40	1	680

 $^{\odot}$ S prockets listed are most common. Any number of teeth are readily available. S plit sprockets are available.

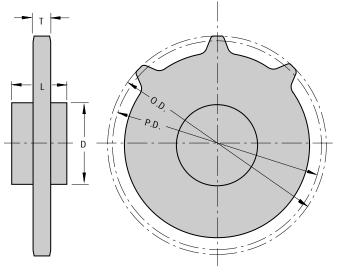
Unit No. 5157 for WHX 5157 Chain

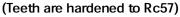
Finished Bore Range Inches	Solid Hub Dia. x Length Inches	Average Hub Only Weight Lbs.
2 - 4	6 x 5.50	15
4 - 5	7.25 x 6.50	25
5 - 6	9 x 7.75	50

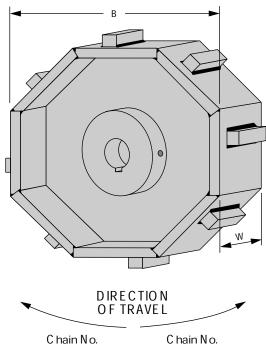
Unit No. 6121 for WHX 5121/6121/6067 Chain

Finished Bore Range Inches	Solid Hub Dia. x Length Inches	Average Hub Only Weight Lbs.
2 – 4	6 x 5.50	15
4 – 5	7.50 x 6.50	25
5 – 6	9 x 7.75	50
6 – 7	10.50 x 8.50	100
7 – 8	11.50 x10.50	1 30

OCTAGONAL TAIL WHEELS


Octagonal tail wheels offer several advantages over conventional sprockets. Chain/tail wheel forces are transmitted directly between sidebars and the octagon surfaces, eliminating barrel and sprocket tooth wear. Side guide lugs are provided to keep the chain centralized on the tail wheel.


Octagon plates and guide lugs are made of hardened steel. Sidebar contact surfaces can be hardfaced for maximum wear resistance.


Rex Chain Number	Bottom Flat "B" (Inches)	Width "W" (Inches)
WHX5157	11.85	6.50
WHX6067	18.88	7.50
WHX5121/WHX6121	18.88	9.00

Finished Bore Range (Inches)	Hub Dia. x Length (Inches)
0 to 3.937	6 x 5
4 to 4.937	7.25 x 6.50
5 to 5.937	9 x 7.75

Flame Cut Steel Sprocket with Hardened Teeth

61 21, 6067, 51 57

5121

CAST SPROCKETS

Cast to Order Hub Specifications

The following table provides recommended hub specifications for use when ordering cast to order sprockets.

Procedure

If torque and bore size are known:

- 1. Locate torque in left hand column. The next column over gives the minimum hub length.
- 2. Locate bore size in top row.
- 3. The intersection of the top row and the column selected in Step 1 is the minimum hub O.D.

If torque only is known:

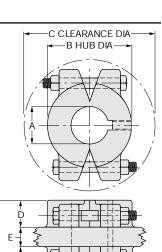
- 1. Locate torque in left hand column. The next column over gives the minimum hub length.
- 2. Move to the right to the first number shown (this is the minimum hub O.D.).
- 3. Move vertically to the top row to determine the minimum bore.

Hub Sizes are Based on Use with Commercial Cold Finished Steel Shafting and Keys^① Dimensions are in inches. Strengths are in pounds.

2³/16 2⁷/16 2¹¹/16 2¹⁵/16 3³/16 3⁷/16 3¹¹/16 3¹⁵/16 4⁷/16 4¹⁵/16 Bore ¹³/16 **1**³/i6 1⁷/16 1¹¹/16 1¹⁵/16 57/16 515/16 71/2 81/2 9 91k 61/2 7 8 10 Width 1/4 1/4 3/8 3/8 1/2 1/2 5/8 5/8 3/4 3/4 7/8 7/8 1 1 **1**¹/4 1¹/4 11/2 1¹/2 1³/4 1³/4 2 2 2 21/2 21/2 **Key Size** Height 1/4 1/4 3/8 ³/8 1/2 ⁵/8 ⁵/8 1/2 ³/4 ³/4 7/8 7/8 1 **1**¹/4 **1**¹/4 1¹/2 **1**¹/₂ 11⁄2 11⁄2 11/2 1¹/2 11⁄2 1³/4 1 ³/4 1 Hub Square Key Flat Key Allowable Hub² Size Torque Length Diameters of Hugs – Keyseated Letter 500 $1^{1/2}$ A 1/2 2 $21/_{2}$ 21/2 3 31/2 4 4 41/2 5 2 3 $3^{1}/_{2}$ 4 4 $4^{1}/_{2}$ 5 $5^{1}/_{2}$ When torque and bore intersect in one of these В 1,000 $1^{1}/_{2}$ 1/ $2^{1}/_{2}$ 12 blank spaces, it indicates that the shaft is larger than required to transmit the torque produced by $1^{1}/_{2}$ $2^{1}/_{2}$ $2^{1}/_{2}$ $3^{1}/_{2}$ 4¹/2 $5^{1}/_{2}$ $5^{1}/_{2}$ С 2,000 2 3 4 4 5 the chain operating at its working load. Use the 2 21/2 21/2 31/2 4 41/2 51/2 51/2 D 3,500 3 4 5 6 first hub diameter below in the same column for the bore required. The correct hub length and 2 3 3¹/2 4¹/2 5 5¹/2 5¹/2 6¹/2 Ε 5,600 3¹/₂ 4 4 6 the torque this hub will safely transmit is found 8,500 $3^{1}/_{2}$ $3^{1/2}$ 4 4 4¹/2 5 5¹/2 $5^{1}/_{2}$ 61/2 71/2 3 6 F in the same row as the hub diameter used. G 12,500 3 4 4 $4^{1}/_{2}$ 41/2 5 51/2 5¹/2 6 61/2 71/2 8 $4^{1}/_{2}$ $5^{1}/_{2}$ $5^{1}/_{2}$ С $4^{1}/_{2}$ $6^{1}/_{2}7^{1}/_{2}$ 9 Н 17,000 3 5 5 6 8 w R 0 $4^{1}/_{2}$ 5 5 $5^{1}/_{2}$ $5^{1}/_{2}$ 6 6¹/2 $7^{1}/_{2}$ 8 9 $9^{1}/_{2}$ 23,000 Т 4 6 5 5 5¹/2 6¹/2 7¹/2 8 9 91/2 10 J 30,000 4 L. 6 U 5¹/2 5¹/2 6¹/2 7¹/2 9 $9^{1/2}$ 10 10¹/: Κ 38,000 5 5 6 8 61/2 6¹/2 7¹/2 8 9 91/2 10 $10^{1/2}$ 47,000 5 М 6 11 L 6 Μ 60,000 5 Ν 61/2 $6^{1/2}$ 7 71/2 8 9 $9^{1/2}$ 10 101/2 11 12 Ν 70,000 6 6¹/2 7 $7^{1}/_{2}$ 8 9 $9^{1}/_{2}$ 10 10¹/2 11 12 12 7¹/2 $8^{1}/_{2}$ 9 $9^{1}/_{2}$ $10^{1}/$ 12 8 10 11 12 13 0 100,000 6 HUB 81/2 9 10 1 0¹/2 11 12 12 13 Ρ 140,000 6 91/2 13 14 190,000 9¹/₂ Q 8 9 10 10¹/2 11 12 12 13 13 14 R 245,000 8 10 10¹/2 11 12 12 12 13 13 14 320,000 8 11 12 12 12 13 13 14 14 S 12 12 Т 400,000 10 12 13 13 14 14 U 500,000 10 13 13 13 14 14 15 When torque and bore intersect in one of 10 13 14 14 15 V 600,000 15 these blank spaces, it indicates that the shaft is subject to greater than 6,000 psi W 720,000 12 14 14 15 15 torsional shear stress 16 850,000 12 Х 15 15 γ 1.000.000 12 16 16 Ζ ,250,000 12 17

Design shear stress = 6,000 psi.

These lengths are the minimum recommended; longer hubs can be furnished at additional cost. For drives, offset hubs, one side flush, are recommended for all Driver sprockets. Long central hubs are recommended for all DriveN. For improved system performance – fab steel drive sprockets are recommended over cast.


③ For a sprocket without a keyseat, a somewhat smaller hub may be used. C onsult R exnord for assistance.

CAST SPROCKETS - (Cont'd.)

Cast Split Hubs – For Cast to Order Tooth Sprockets and Traction Wheels (*Hub sizes are based on use with commercial, cold finished, steel shafting and keys*⁽¹⁾)

Use of Tables. After having determined torque and knowing the required bore, refer to Table No. 1, below, to obtain the hub identification number.

Hub dimensions are listed in Table No. 2, below. The hub over-all length (F) – see drawing to the right – is definitely fixed for a given sprocket or wheel pattern and bore. It is determined by standard fixed hub pattern projections (D) and pattern body thickness (E) the latter depending on the sprocket or traction wheel pattern involved.
 When length F must be maintained or known, refer to the factory for certified dimensions.
 These hubs are furnished central and of fixed length only.

Table No. 1 – Hub Number for Given Class and Bore

Dimensions are in inches. Strengths are in pounds.

Bore	¹⁵ /16	1 ³ /16	17/16	1 ¹¹ /16	1 ¹⁵ /16	2 ³ /16	27/16	2 ¹¹ /16	2 ¹⁵ /16	3 ³ /16	3 7/16	3 ¹¹ /16	3 ¹⁵ /16	4 ⁷ /16	4 ¹⁵ /16	5 ⁷ /16	5 ¹⁵ /16
Sq. Key Size In.	¹ /4	¹ /4	³ /8	³ /8	¹ /2	¹ /2	⁵ /8	⁵ /8	³ /4	³ /4	⁷ /8	7/8	1	1	1 ¹ /4	1 ¹ /4	1 ¹ /2
Allow Torque ②	Torque @ Hub Number																
500	L2-015	L2-103	L2-107	L2-111	L2-115	L2-203	L2-207	L2-211	L2-215	L2-303			When torque and bore intersect in one of these blank spaces, it indicates that the shaft is larger				
1,000	L2-015	L2-103	L2-107	L2-111	L2-115	L2-203	L2-207	L2-211	L2-215	L2-303	L2-307		than required to transmit the torque produced by the chain operating at its working load. Use the first hub diameter below in the same column for the bore required. The correct hub length and the torque this hub will safely transmit is found in the same row as the hub diameter used.			se the imn for	
2,000		L2-103	L2-107	L2-111	L2-115	L2-203	L2-207	L2-211	L2-215	L2-303	L2-307	L2-311					
3,500			L2-107	L2-111	L2-115	L2-203	L2-207	L2-211	L2-215	L2-303	L2-307	L2-311	L2-315				
5,600				L2-111	L2-115	L2-203	L2-207	L2-211	L2-215	L2-303	L2-307	L2-311	L2-315	L2-407			
8,500					L2-115	L2-203	L2-207	L2-211	L2-215	L2-303	L2-307	L2-311	L2-315	L2-407	L2-415		
12,500						L2-203	L2-207	L2-211	L2-215	L2-303	L2-307	L2-311	L2-315	L2-407	L2-415	L2-507	
17,000							H2-207	H2-211	L2-215	L2-303	L2-307	L2-311	L2-315	L2-407	L2-415	L2-507	L2-515
23,000								H2-211	H2-215	L2-303	L2-307	L2-311	L2-315	L2-407	L2-415	L2-507	L2-515
30,000									H2-215	H2-303	H2-307	L2-311	L2-315	L2-407	L2-415	L2-507	L2-515
38,000										H2-303	H2-307	L2-311	L2-315	L2-407	L2-415	L2-507	L2-515
47,000					ersect in o						H2-307	H2-311	L2-315	L2-407	L2-415	L2-507	L2-515
60,000					cates tha than 6,00							H2-311	H2-315	H2-407	L2-415	L2-507	L2-515
70,000			I shear st										H2-315	H2-407	L2-415	L2-507	L2-515
100,000														H2-407	H2-415	L2-507	L2-515
140,000															H2-415	H2-507	H2-515
190,000																H2-507	H2-515
245,000																	H2-515
				Maximu	m Pitch D	iameter	(Inches)	of Sproc	kets or V	Vheels fo	r Use Wi	thout Ri	m-Lugs				
	15	16	17	18	20	21	22	23	24	26	26	27	28	30	33	37	39

Table No. 2 - Standard Split Hubs - Dimensions In Inches

Hub No.	A Bore	В	С	D	E Max.	Wt. Ea. W/Bolts	Hub No.	A Bore	В	C	D	E Max.	Wt.Ea. W/Bolts	Hub No.	A Bore	В	С	D	E Max.	Wt Ea. W/Bolts
L2-015	¹⁵ /16	200	4.31	1.38	1.13	1	L2-215	2 ¹⁵ /16	5.25	8.06	1.69	200	7	H2-315	3 ¹⁵ /16	7.25	11.94	2.50	2.50	-
L2-103	1 ³ /16	2.25	4.56	1.38	1.13	1	H2-215	2 ¹⁵ /16	6.00	10.31	213	200	16	L2-407	4 ⁷ /16	7.50	11.50	2.31	2.50	17
L2-107	1 ⁷ /16	3.00	5.75	1.56	1.25	4	L2-303	3 ³ /16	6.00	9.44	1.81	2.00	10	H2-407	4 ⁷ /16	800	13.88	2.94	2.50	33
L2-111	1 ¹¹ /16	3.50	6.38	1.69	1.25	5	H2-303	3 ³ /16	6.50	10.31	213	2.00	16	L2-415	4 ¹⁵ /16	8.50	12.88	2.56	2.50	28
L2-115	1 ¹⁵ /16	3.75	6.63	1.69	1.50	5	L2-307	37/16	6.25	9.63	1.81	200	10	H2-415	4 ¹⁵ /16	9.00	14.25	2.94	2.50	37
L2-203	2 ³ /16	4.25	7.25	1.69	1.50	7	H2-307	3 ⁷ /16	6.75	10.63	213	200	17	L2-507	5 ⁷ /16	9.50	14.63	1.75	2.50	37
L2-207	2 ⁷ /16	4.50	7.38	1.69	1.75	7	L2-311	3 ¹¹ /16	6.75	10.63	213	200	17	H2-507	5 ⁷ /16	10.00	17.00	3.50	2.50	65
H2-207	27/16	5.00	8.63	1.81	1.75	9	H2-311	3 ¹¹ /16	7.00	11.63	238	200	18	L2-515	5 ¹⁵ /16	10.00	15.00	1.75	3.00	34
L2-211	2 ¹¹ /16	4.75	7.88	1.69	2.00	7	L2-315	3 ¹⁵ /16	7.25	11.13	2.25	2.50	25	H2-515	5 ¹⁵ /16	11.00	17.50	3.44	3.00	65
H2-211	2 ¹¹ /16	5.50	8.88	1.81	200	15														

Rim Lugs. Sprockets and traction wheels with plate (web) body, or small-diameter arm body, require split rim-lugs projecting on each side. When the arm body is sufficiently large, single split rim-lugs are used between the arms. Some chain attachments (as G19) will interfere with projecting split rim-lugs, thus making special construction necessary, refer to factory.

Design shear stress = 6,000 psi
 Inch-Pounds

Note: Dimensions are subject to change. Certified dimensions of ordered material are furnished upon request.

CAST TOOTH SPROCKETS

					OCK	
No. of	Pitch		•		Cast to Order	Avg.
Teeth	Dia.	Hub	Hub	Max.	Max.	Wt.
			Length	Bore	Bore	
			t – Pit			
		ice at	Pitch L	ine .3	75 Inche	
6	1.80				.62	.5
7	2.08				.88	.6
8	2.36 2.64				.94 1.06	.8 1.1
10	2.92				1.18	1.4
11	3.49				1.44	1.5
12	3.49				1.68	1.6
13	3.77				1.68	1.7
14	4.50				1.68	1.9
15	4.34				1.94	2.5
16	4.62				2.18	2.9
17	4.91				2.44	3.1
18	5.19				2.44	3.2
19	5.48				2.94	3.4
21	6.05				2.94	4.2
22 23	6.34 6.62				3.18 3.18	4.4 4.7
23	6.91				3.44	4.7 5.2
24	7.20				3.44	5.2 5.8
26	7.48				3.94	6.3
28	8.06				3.94	7.2
29	8.34				4.44	7.5
30	8.63				4.44	8.3
32	9.20				4.94	9.0
36	10.33				4.94	10.4
37	10.63				4.94	10.8
40	11.50				4.94	8.9
52	14.94				4.94	14.0
			T – PIT		54 DO Inche	
6	2.31	ice at	PIICH	ine .ou	.94	1.0
7	2.66				.94	1.2
8	3.02				1.18	1.3
9	3.37				1.18	1.5
10	3.73				1.44	1.7
11	4.10				1.94	2.0
12	4.46				2.18	2.5
13	4.82				2.18	2.9
14	5.19				2.44	3.4
15	5.55				2,94	4.0
16	5.92				3.18	4.2
17 18	6.28				3.18 3.44	4.7 5.2
18	6.65 7.01				3.44	5.2 5.8
20	7.38				3.94	6.3
22	8.11				4.44	7.5
24	8.84				4.94	9.0
25	9.21				5.44	10.0
26	9.57				3	11.5
28	10.31					12.0
32	11.77					15.5
34	12.51					17.9
38	13.97					17.0
40 48	14.71					19.0
40	17.64					24.0

					Cast to	Ava
No. of	Pitch	Stocke	d Sproc Hub	kets 🖉 Max.	Order	Avg. Wt
Teeth	Dia.		Length	Bore	Max. Bore	Hub Dla.
			T – PIT			
6	ooth ⊦a 2.75	ice at	Pitch L	ine .62	25 Inche	es 1.3
7	3.17				1.18	1.3
8	3.59				1.18	2.8
9 10	4.02 4.45				1.68 1.94	3.2 3.5
11	4.43				2.18	5.5
120	5.31				2.68	4.9
13 14	5.75 6.18				2.94	5.5
14	6.66				3.18 3.44	6.0 6.5
16	7.03				3.94	7.5
18	7.92 8.34				4.44 ③	9.5
19 20	8.34 8.77				9	10.5 11.5
21	9.21					12.5
22	9.65					13.5
24 27	10.51 11.82					16.0 17.5
28	12.25					18.0
32	14.03					23.0
41	17.97				20	31.0
Т			T – PIT Pitch I		su 37 Inche	20
	Als		lable in		eric.	_
5 60	2.77 3.26	2.00	1.50	1.25	.94 1.18	1.3 2.3
00 7①	3.20 3.76	2.00	1.50	1.25	1.18	2.3 2.6
8S1	4.26	3.00	1.50	1.82	1.94	4.0
8L	4.26	3.00	2.00	2.25	2.18	5.5
90 100	4.77 5.27	2.50 2.50	1.50 1.50	1.62 1.62	2.18 2.18	3.8 7.0
11	5.79	4.00	3.00	2.50	2.68	10.3
12S	6.30	2.50	2.00	1.62	2.94	6.3
12L 13	6.30 6.81	4.00 4.00	3.00 3.00	2.50 2.50	2.94 3.68	10.5
14	7.33	3.50	2.00	2.30	3.94	10.1
15	7.84				4.44	12.9
16	8.36	3.50	2.00	2.25	4.44 4.44	12.4
17 18	8.87 9.39	2.50	2.00	1.18	4.44 5.44	12.0 14.5
19	9.90				5.44	13.8
20	10.42	4.00	3.00	2.50	5.44	15.8
21 22	10.93 11.45				6.50 7.00	16.3 18.6
23	11.97				7.50	20.8
24	12.49	4.00	3.00	2.50	8.00	23.5
25 26	13.01 13.53					23.4 24.6
27	14.07					25.8
28	14.54					27.0
30 31	15.60 16.11					29.0 30.0
32	16.64					31.0
34	17.68					32.0
35	18.18 18.68					33.0
36 38	19.75					34.0 36.0
39	20.26					37.0
40	20.79					38.0
42 44	21.81 22.85					40.0 42.0
45	23.37					43.0
48	24.94					46.0
58	30.11					57.0

		Stocke	ed Sproc	Cast to		
No. of Teeth	Pitch Dia.	Hub	Hub Length	Order Max.	Avg. Wt.	
	51		T – PIT	Bore	Bore	
T					62 Inche	20
12	4.39				1.94	3.5
15	5.46				2.44	5.0
18	6.58				3.18	6.0
-			T – PIT			
					52 Inche 51 (Stee	
6	2.31	IT NO.	51 (68	150 0	.94	1.2
7	2.65				.94	2.0
8	3.02				.94	2.4
9	3.37				1.18	3.0
10 11	3.75 4.10				1.44 1.44	3.4 3.8
12	4.46				1.94	4.0
13	4.90				2.18	4.5
14	5.19				2.18	5.5
15	5.54				2.44	6.0
16 17	5.90 6.19				2.94 3.18	6.8 7.4
18	6.63				3.18	7.4
19	7.02				3.44	8.0
20	7.35				3.94	8.4
21	7.75				4.44	9.0
22 24	8.12 8.85				4.44 4.94	9.5 11.0
25	9.19				3	12.5
26	9.58					13.0
27	9.95					13.8
28	10.32					14.5
30 31	11.05 11.42					16.0 16.5
32	11.75					17.0
33	12.15					17.8
34	12.52					18.0
36 40	13.25 14.66					19.0 23.0
40 55	20.23					38.0
55		2 CAS	T – PIT	CH 1.5	06	30.0
T					25 Inche	es
5	2.56					2.3
6	3.01				.94	3.5
7 8	3.47 3.94				.94 1.68	4.0 4.4
9 ¹	4.40	3.00	1.50	1.82	1.94	3.3
10	4.87	3.00	2.00	1.82	2.18	3.4
11	5.34	0.00	0.07	1.05	2.68	4.3
12 13	5.82 6.29	3.00	2.00	1.82	2.68 2.94	5.4 5.8
14	6.77	4.00	3.00	2.50	2.94 3.18	5.8 11.1
15	7.24		0.00	2.00	3.68	7.4
16	7.72	4.00	3.00	2.50	3.94	12.0
17	8.20				4.44	9.0
18 19	8.67 9.15				4.44 ③	14.C 12.C
20	9.15					12.0
21	10.10					15.0
22	10.56					17.C
23	11.06		0.07	0.55		18.0
24 25	11.54	4.00	3.00	2.50		21.0 22.0
25 26	12.00 12.49				3	22.0
27	12.97					19.0
28	13.45					19.0

SPROCKETS

CAST TOOTH SPROCKETS - (Cont'd.)

S
Ē
П
X
X
2
Ř

CAS					Cast to	
No. of	Pitch	Hub	Hub	Max.	Order	Avg.
Teeth	Dia.		Length	Bore	Max. Bore	Wť
	52 CA	ST – P	ITCH 1.	506 ((Cont'd.)	
Te	ooth Fa				25 Inche	es
32	15.33					22
34	16.32					32
35	16.80					27
36	17.28					31
37 38	17.72 18.24					30 32
38 40	18.24					32 34
40	20.16					35
44	21.11					39
48	23.03					45
50	23.98					48
60	28.78					58
75	39.95					78
			st- Pit			
		ice at	Pitch L	ine .68	87 Inche	
5	2.77				.94	2
6	3.26	0.50	1 50	1 00	.94	3
7① 9①	3.76	2.50	1.50	1.62	1.68	2
80	4.26 4.77	2.50	1.50	1.62 1.94	1.68 1.94	3 3
9 10	4.77	3.00 3.50	2.00 2.00	1.94 2.18	2.18	3
10	5.79	4.50	2.00	2.10	2.10	4 9
12	6.30	4.50	3.00	2.88	2.94	11
13	6.82		2.00		3.18	10
14	7.33	4.50	3.00	2.88	3.68	17
15	7.84				3.94	15
16	8.36	4.50	3.00	2.88	4.44	16
17	8.88			0.55	4.44	17
18	9.39	4.50	3.00	2.88	4.94	18
19	9.90	4 5 0	2.00	2.00	5.44	20
20 21	10.43 10.94	4.50	3.00	2.88	5.44 5.94	22 23
22	11.43				5.94	23
23	11.43				6.50	26
24	12.50	5.00	4.00	3.25	6.50	33
26	13.53	0.00	1.00	0.20	0.00	31
27	14.07					24
28	14.54					25
29	15.08					26
30	15.60					27
31	16.11					23.5
32	16.64					29
34 35	17.68 18.20					31 32
35	18.68					32
38	19.75					35
40	20.79					37
41	21.31					36
48	24.94					45
50	25.98					47
54	28.00					50
	D	3DCAS	ST-PI	CH2	307	
		ce at	Pitch L	ine .9	38 Inche	
6	4.61					4
7	5.32				2.68	8
8	6.03				2.88	8.4
9	6.75				2.94	13
10	7.46				3.18	14 27
13	9.64					

All dimensions given in inches and weight in Lbs. ^① Hub one side. All other hubs are long central. ^② If no hub data is listed, sprocket is cast to order.

Consult Rexnord for max. bore information.
 4 For 962 chain use unit no. 62 sprocket from

m 6 to 23

010190	chain, use unicho. Oz sprockechon
teeth, ove	r 23 teeth, consult Rexnord.

	ta.)	Stocke	d Sproc	kets ②	Cast to		
No.of Teeth	Pitch Dia	Hub	Hub	N⁄alx.	Order Max.	Avg. V¥V.	
			Length		Bore		
			T – PIT ardene				
To					2 Inches	s [@]	
5	2.81				0.4	1.5	
6 7	3.32 3.82	2.50	2.00	1.62	.94 1.68	3 2	
8	4.32	3.00	2.00	1.82	1.94	4	
9	4.84	3.00	2.00	1.82	1.94	5	
10 11	5.35 5.87	4.00 4.00	3.00 3.00	2.50 2.50	2.68 2.68	9 9	
12	6.39	3.00	2.00	1.82	2.94	7	
13 14	6.91 7.43	4.00	3.00	2.50	3.18	14 24	
14	7.43	5.00 5.50	3.00 4.00	3.25 3.62	3.68 3.94	24 26	
16	8.48				4.44	25	
17	9.00		1 00	2.02	4.44	26 28	
18 19	9.53 10.05	5.50 4.00	4.00 3.00	3.62 2.50	4.94 5.44	28 22	
20	10.57	5.50	4.00	3.62	5.44	32	
21 22	11.10				5.94	39	
22 23	11.63 12.15				5.94 5.94	27 30	
24	12.67	5.00	3.00	3.25	6.50	36	
25	13.20				6.50	36 36	
26 27	13.72 14.25				7.00 7.00	36 58	
28	14.77				7.50	60	
29 30	15.30				7.50	31.6 44	
30	15.83 16.88				8.00	44	
33	17.44				8.00	50	
34 36	17.93 18.98				8.00	77 90	
30 38	20.03	6.00	4.00	4.00	3	90 93	
39	20.55					61	
40 41	21.07 21.61					40.2 65	
42	22.13					72	
43	22.66					74	
45 46	23.71 24.24					77 80	
47	24.77					48.6	
48	25.29					83	
49 54	25.82 28.45					84 93	
60	31.60					71	
			ST – PIT ardene				
To		`			87 Inche	es	
5	3.93				1.18	4	
6 7	4.62 5.32	3.00 3.50	2.00 3.00	1.82 2.18	1.94 2.18	4 8	
8	6.03	4.00	3.00	2.50	2.68	11	
9	6.75	4.50	3.00	2.88	2.94	13	
10 11	7.47 8.19	4.50 4.50	3.00 3.00	2.88 2.88	3.18 3.94	15 16	
12	8.92	4.50	3.00	2.88	4.44	18	
13	9.64	E 00	2.00	2.25	4.44	18	
14 15	10.37 11.10	5.00	3.00	3.25	5.44 5.44	28 27	
16	11.83	5.00	3.00	3.25	6.50	30	
17	12.56				7.00	31	
18 19	13.29 14.02				7.00 7.50	34 37	
20	14.75	5.00	4.00	3.25	7.50	47	
21	15.49				3	43	
22 23	16.22 16.95					24 48	
24	17.60					50	

		Bock	d Sproc	kote ()	Cast to	
No.of Teeth	Pitch Dia.	Hub	Hub	Matx.	Order Max.	Avg. V¥%.
			Length	Bore	Bore	
	(Vivth I	ardene	d Teet	h)	
To			Pitch L lable in		37 Inche	es
25	18.41			polyn		53
26	19.14					54 59
27 28	19.89 20.61					59 34
30	22.07				3	67
32 33	23.54 24.27					23 75
34	25.00					78
35 36	25.74 26.47					80 84
38	27.94					88
40	29.40 32.34					94
44 45	32.34 33.06					120 125
48	35.27					115
60	44.08	8049	st- Pit	0H26	7 0	148
To					37 Inche	es
F	Also 4.44	o Avai	lable in	polym		F
5 6	4.44 5.22	3.00	2.00	1.44	1.18 1.94	5 6
7	6.00	4.00	3.00	2.44	2.94	11
8 9	6.82 7.63	4.50 4.50	3.00 3.00	2.50 2.50	2.94 3.18	15 24
10	8.44	4.50	3.00	2.75	3.94	19
11 12	9.26 10.08	5.00	4.00	3.25 4.00	4.44 5.44	29 40
13	10.00		4.00	4.00 3.25	5.44	36
14 15	11.72	5.00	4.00	3.25	6.50	39 44
16	12.55 13.37	6.00 6.00	4.00 5.00	4.00 4.00	7.00 7.00	44 55
17	14.20		4.00	3.25	7.50	53
18 19	15.02 15.85	6.00	4.00	4.00	7.50 ③	61 64
20	16.68	6.00	5.00	4.00		89
21 22	17.50 18.33	600	5.00	4.00		90 87
23	19.16	0.00	5.00	4.00		95
24	19.99	7.00	5.00	4.56		111
25 26	20.77 21.64					99 107
27	22.42					112
28 29	23.31 24.13					114 116
30	24.96					119
31 32	25.79 26.62					123 85
33	27.38					136
34 35	28.28 29.11					141 146
35	29.11					153
38	31.60					162
39 40	32.42 33.25	8.00	6.00	5.50		176 267
41	34.08					180
42 43	34.91 35.65					193 197
44	36.57					202
45 46	37.31 38.18					190 212
46 48	38.18					212
54 55	44.87					249
55 58	45.70 48.19					253 267

CAST TOOTH SPROCKETS - (Cont'd.)

	1 10				OCK	
No. of	Pitch	Stocke	ed Sproc	kets ②	Cast to Order	Avg.
Teeth	Da.	Hub Dia.	Hub Length	Max. Bore	Naix. Bore	V¥.
H1C	22DRU	VIFLA	NGEDC	AST-	PITCH 5	ത
					250 Inch	
8	13.07				6.50	160
10	16.18				7.00	175
	H	0204	st- Pi	TCH 5	œ	
То		ce at	Pitch Li	ne 6.2	250 Inch	es
6	10.00				3.94	70
7	11.52				4.94	80
8	13.07	_			6.50	100
9 10	14.62 16.18				7.00 ③	120 140
12	19.32				9	165
13	20.89					180
15		/BCA	st- P	TCH4	ന	100
			ardene			
					875 Inch	
6	8.00				3.94	31
7	9.22				3.94	44
8	10.45	7.00	5.00	1.50	4.44	57
9		7.00	5.00	4.56	5.44	64
10	12.94 14.20	7.00	5.00	4.56	7.00	74 87
11 12	14.20 15.45	7.00	5.00	4.56	7.50 8.00	
12	16.71	7.00	5.00	4.56	8.00	90 116
14	17.98	7.00	5.00	4.56	8.50	124
15	19.24	7.00	5.00	4.56	0.00	122
16	20.50	7.00	5.00	4.56		128
17	21.76					111
18	23.04					155
19	24.30	7.00	5.00	4.50		165
20	25.57					175
21	26.84					185
22	28.11	_				194
24	30.65	2160	AST-F		1010	214
		\/i/th_l	ASI – F Hardene	d Teet	+0-10 h)	
Τo					375 Inch	es
6	8.08				3.94	30
8	10.56				4.44	55
9	11.81				5.44	62
10	13.07				5.94	64
11	14.34				6.50	70
12	15.61				7.00	78
13	16.88				7.50	85
14 15	18.16 19.43					94 105
16	20.71					112
17	21.98					122
19	24.55					140
20	25.83					150
22	28.39					175
22						190
24	30.95					1.50
	30.95 32.23 33.33					210 230

Cont'd.)											
. <i>.</i>	D . 1	Stocke	ed Sproc	kets 🛛	Cast to	•					
No. of Teeth	Pitch Dia	Hub	Hub	N⁄atx.	Order Max.	Avg. V¥%.					
leeui	Løa.	Da.	Length	Bore	Bore	v w.					
	1	ЗCA	st- Pi	ганз	075						
			ardene								
Tooth Face at Pitch Line 1.125 Inches. Also available in polymeric.											
6	Als 6.15	o avai	lable in	polym	eric. 1.94	20					
7	7.09				2.68	20					
8	8.04	5.50	4.00	3.62	2.00	31					
9	8.99	5.50	4.00	3.62	3.68	42					
10	9.95	6.00	4.00	4.00	4.44	41					
11	10.91	6.00	4.00	4.00	4.94	45					
12	11.88	6.50	4.00	4.50	5.44	57					
13	12.85					59					
14	13.82				7.00	63					
15 16	14.79 15.76				7.00	75 76					
17	16.74				8.00	100					
18	17.71	6.50	4.00	4.50	8.00	93					
19	18.68	7.00	5.00	4.56	8.50	114					
20	19.66	7.00	5.00	4.56	3	98					
21	20.63					114					
22	21.61					122					
23 24	22.58					131 128					
24	23.56 24.54					144					
26	25.51					151					
27	26.49					157					
28	27.49					164					
29	28.44					170					
30	29.42					177					
31 32	30.39 31.37					184 132					
33	32.35					197					
34	33.33					142					
35	34.30					210					
36	35.28					216					
38	37.24					230					
40	39.19					243					
42 44	41.15					256					
44	43.11 47.02					269 295					
49	48.00					301					
		0404	ST- P	TCH6	œ	001					
	oth Fac				00 Inch						
5	10.21					52					
6	12.00					64					
7	13.83 15.68				7.00	70					
8	15.68				7.00 ③	100 112					
10	19.42				5	126					
11	21.30					130					
12	23.18					149					
13	25.07					185					
					PITCHE						
		ce at l	Pitch Li	ne 4.0	00 Inch						
9 10	17.54 19.42					240 290					
	10.42					230					

	Stocked Sprockets ⁽²⁾ Cast to								
No. of Teeth	Pitch Dia	Hub	Hub	ľ∧alx.	Order Max.	Avg. V¥t.			
leeui	Løa.	Da.	Length	Bore	Bore	V W.			
	1	10CA	ST-P	TCH 6	œ				
т.			ardene						
6	oth Fac 12.00	ce at i	PITCH LI	ne 1.8	75 Inch 3.94	es. 63			
7	13.84				3.94	68			
8	15.68	7.00	5.00	4.56	4.94	121			
9	17.54	7.00	5.00	4.56	5.44	98			
9.5	18.45					120			
10	19.42	7.00	5.00	4.56	5.94	123			
11	21.30				7.00 ③	143			
11.5 12	23.00 23.18				9	126 256			
12.5	24.12					124			
13	25.07	7.00	5.00	4.50		169			
14	26.96	,	0.00			100			
16	30.76					181			
18	34.55					206			
19	36.46					214			
	Hi	10024 \/\idth	ST– Pi Hardene	9 HOI d Teet	5CLLD h)				
Tooth \					s Barrel I	enath			
5	10.15				Duneri	120			
6	12.00				5.44	100			
8	15.68				3	150			
9	17.54					180			
10	19.42					217			
11	21.30					225			
12 15	23.18 28.86					296 610			
				AST_	ртан (
	оц () (Vivth I	ardene	d Teet	h)				
		e at l	Pitch Li	ne 8.8	75 Inch				
8	15.68				3	310			
9	17.54					360			
10	19.42 21.30					410 450			
11		11 (744	ST- P1	CH 4	760	450			
	(Vith	hardene	d Teet	h)				
		e at l	Pitch Li	ne 2.3	75 Inch				
6	9.52					47			
7	10.99	7.50	6.00	5.00	E O A	54			
8	12.44 13.92	7.50	6.00	5.06	5.94 5.94	98 107			
10	15.40	7.50	6.00	5.06	5.34	122			
11	16.90	7.50	0.00	5.00	3	136			
12	18.39	6.00	5.00	3.44		130			
13	19.89					170			
14	21.39					175			
15	22.89	_				134			
16	24.40	7.50	6.00	4.82		189			
17	25.90					218			
18	27.41					185			
20 22	30.43 33.44					510 230			
24	36.47					351			
	CASTD	OBL	RTOH	- RTO	14760				
	(Vivth I	Hardene	d Teet	h)				
		e at l	Pitch Li	ne 2.3	75 Inch				
8	15.74					90			
10	19.40					107			

SPRODVETS

8	15.74					90
10	19.40					107
12	23.22	—	_	5.94	9.00	190

CAST TOOTH SPROCKETS -									
No. of	Pitch	Stocke	ed Sproc	kets ②	Cast to Order	Avq.			
Teeth	Da.	Hub Dia.	Hub Length	Matx. Bore	Nax. Bore	,~vg. ∨w¥.			
	H1	1204	ST- P	тан е	SCOD				
		ce at l	Pitch Li	ne 9.0	00 Inche				
7	18.44 20.90				6.94 ③	230 267			
	H1	1604	ST- P	тан е	3000				
Too	oth Fac	e at F	Pitch Lir	ne 12.7	750 Inch	nes.			
7	18.44					400			
8	20.90 23.39				6.94	325 460			
5		1904	ST- Pľ	ган е	ഞ	400			
То					25 Inche	es.			
6	12.00				4.44	95			
			ST- P						
		ce at l	Pitch Li	ne 8.7	50 Inche				
6 8	12.00 15.68				5.44 6.94	130 250			
9	17.54				0.94	190			
10	19.42					215			
	HI	21 04	st- P	tah s	e B B B B B B B B B B B B B B B B B B B				
					25 Inche	es.			
8	23.52		ST- PI	6.44					
Ta			-						
	18.44	e at i		ne 8.0	00 inche	es. 210			
7	H1	230A	ST- PI	тан э	œ	210			
То					50 inche	es.			
8	23.52			6.44					
	H	2404	ST – Pľ Hardene	TOH 4					
To					00 inche	26			
7	9.22				3.94	38			
8	10.45				4.94	46			
9	11.70				5.44	58			
10	12.94				5.44 5.94	62			
11	14.20 15.45				5.94 6.50	69 82			
14	17.98				3	98			
15	19.24					100			
16	20.50				_	122			
17 18	21.77 23.04					136 147			
19	24.30					154			
20	25.57					161			
22	28.11					176			
27 28	34.46 35.73					240 250			
30	38.27					290			
37	47.18					410			
	1	30CA	ST-PI		000				
Te			-ardene Pitch Li		n) 00 Inch	es			
5	6.77			10 1.0		18			
6	8.00					21			
7	9.22				3.94	25			
8	10.45 11.70	5.00	4.00	3.25	4.94 ③	32 44			
10	12.94	5.00	00	5.25		48			
11	14.20					52			
12	15.45					59			
13 14	16.71 17.95					58 61			
14	20.50					61 75			
	20.00	l	1			75			

(Con	ť d.)									
No. of	Pitch	Stocke	ed Sproc	kets ②	Cast to Order	Avg.				
Teeth	Da.		Hub Length	Max. Bore	N⁄alx. Bore	V¥.				
132CAST - PITCH 608D (Vith Hardened Teeth)										
To					50 inch	es.				
5	10.29				2.94	102				
6	12.10					92				
7	1 5 01	7.50	0.00	1.00		100				
8	15.81 17.69	7.50	6.00	4.62	5.44 5.94	190 269				
10	19.58	7.50	6.00	4.44	5.94 5.94	269				
11	21.47	7.50	6.00	4.25	5.94	232				
12	23.38	7.50	6.00	4.00	6.50	251				
13	25.28				6.50	317				
14 15	27.19				3	352				
16	29.10 31.01					372 302				
18	34.84					445				
19	36.76					486				
20	38.67					495				
					atch6					
10	oth Fac	ce at l	Pitch Li	ne 3.0	00 inch	es.				
11										
12										
	1	830A	ST – PI	анз	ത					
	1									
T		(Vivth I	ardene Bitch I	d Teet		6				
	poth Fa	(Vith I ce at	Pitch L	d Teet ine .81	2 inche	s.				
Тс 6 7		(Vith I ce at		d Teet						
6 7 8	ooth Fa 6.00 6.91 7.84	(Vith I ce at	Pitch L	d Teet ine .81	2 inche 2.68 2.68 2.68	11 14 16				
6 7 8 9	ooth Fa 6.00 6.91 7.84 8.77	(Vith I ce at	Pitch L	d Teet ine .81	2 inche 2.68 2.68 2.68 2.94	11 14 16 22				
6 7 8 9 10	ooth Fa 6.00 6.91 7.84 8.77 9.71	(Vith I ce at	Pitch L	d Teet ine .81	2 inche 2.68 2.68 2.94 2.94	11 14 16 22 25				
6 7 8 9	ooth Fa 6.00 6.91 7.84 8.77 9.71 10.65	(Vith I ce at	Pitch L	d Teet ine .81	2 inche 2.68 2.68 2.94 2.94 2.94	11 14 16 22 25 30				
6 7 8 9 10 11	ooth Fa 6.00 6.91 7.84 8.77 9.71	With I ce at 4.00	Pitch L	d Teet ine .81	2 inche 2.68 2.68 2.94 2.94	11 14 16 22 25				
6 7 8 9 10 11 12 13 14	00th Fa 6.00 6.91 7.84 8.77 9.71 10.65 11.59 12.54 13.48	With I ce at 4.00	Pitch L 3.00	d Teet ine .81 2.50	2 inche 2.68 2.68 2.94 2.94 2.94 3.18 3.49 4.94	11 14 16 22 25 30 32 38 40				
6 7 8 9 10 11 12 13 14 15	00th Fa 6.00 6.91 7.84 8.77 9.71 10.65 11.59 12.54 13.48 14.43	With I ce at 4.00	Pitch L 3.00	d Teet ine .81 2.50	2 inche 2.68 2.68 2.94 2.94 2.94 3.18 3.49 4.94 5.44	11 14 16 22 25 30 32 38 40 45				
6 7 8 9 10 11 12 13 14 15 16	00th Fa 6.00 6.91 7.84 8.77 9.71 10.65 11.59 12.54 13.48 14.43 15.38	With I ce at 4.00	Pitch L 3.00	d Teet ine .81 2.50	2 inche 2.68 2.68 2.94 2.94 2.94 3.18 3.49 4.94	11 14 16 22 25 30 32 38 40 45 47				
6 7 8 9 10 11 12 13 14 15 16 18	00th Fa 6.00 6.91 7.84 8.77 9.71 10.65 11.59 12.54 13.48 14.43 15.38 17.28	With I ce at 4.00	Pitch L 3.00	d Teet ine .81 2.50	2 inche 2.68 2.68 2.94 2.94 2.94 3.18 3.49 4.94 5.44	11 14 16 22 25 30 32 38 40 45 47 55				
6 7 8 9 10 11 12 13 14 15 16	00th Fa 6.00 6.91 7.84 8.77 9.71 10.65 11.59 12.54 13.48 14.43 15.38	With I ce at 4.00	Pitch L 3.00	d Teet ine .81 2.50	2 inche 2.68 2.68 2.94 2.94 2.94 3.18 3.49 4.94 5.94	11 14 16 22 25 30 32 38 40 45 47				
6 7 8 9 10 11 12 13 14 15 16 18 19 20 25	ooth Fa 6.00 6.91 7.84 8.77 9.71 10.65 11.59 12.54 13.48 14.43 15.38 17.28 18.23 19.18 23.94	Vith ce at 4.00 5.00	Pitch L 3.00	d Teet ine .81 2.50	2 inche 2.68 2.68 2.94 2.94 2.94 3.18 3.49 4.94 5.94	11 14 16 22 25 30 32 38 40 45 47 55 58 65 85				
6 7 8 9 10 11 12 13 14 15 16 18 19 20 25	ooth Fa 6.00 6.91 7.84 8.77 9.71 10.65 11.59 12.54 13.48 14.43 15.38 17.28 18.23 19.18 23.94 36.33	5.00	Pitch L 3.00 4.00	d Teetine .81	2 inche 2.68 2.68 2.94 2.94 2.94 3.18 3.49 4.94 5.44 5.94 3	11 14 16 22 25 30 32 38 40 45 47 55 58 65				
6 7 8 9 10 11 12 13 14 15 16 18 19 20 25	ooth Fa 6.00 6.91 7.84 8.77 9.71 10.65 11.59 12.54 13.48 14.43 15.38 17.28 19.18 23.94 36.33	Vith 1 ce at 1 4.00	Pitch L 3.00 4.00	d Teet ine .81 2.50 3.25	2 inche 2.68 2.68 2.94 2.94 2.94 3.18 3.49 4.94 5.94 5.94 3 3	11 14 16 22 25 30 32 38 40 45 47 55 58 65 85				
6 7 8 9 10 11 12 13 14 15 16 18 19 20 25 38	ooth Fa 6.00 6.91 7.84 8.77 9.71 10.65 11.59 12.54 13.48 14.43 15.38 17.28 18.23 19.18 23.94 36.33	Vith 1 ce at 4.00 5.00	Pitch L 3.00 4.00	d Teet ine .81 2.50 3.25 3.25	2 inche 2.68 2.68 2.94 2.94 2.94 3.18 3.49 4.94 5.94 5.94 3 3	11 14 16 22 25 30 32 38 40 45 47 55 58 65 85 140 es.				
6 7 8 9 10 11 12 13 14 15 16 18 19 20 25 38 7 0 5	ooth Fa 6.00 6.91 7.84 8.77 9.71 10.65 11.59 12.54 13.48 14.43 15.38 17.28 13.28 14.23 19.18 23.94 36.33 11 00th Fac 6.78	Vith 1 ce at 4.00 5.00	Pitch L 3.00 4.00	d Teet ine .81 2.50 3.25 3.25	2 inche 2.68 2.68 2.94 2.94 3.18 3.49 4.94 5.94 3 3 4.94 5.94 3 3 3 3 3 3 3 3 3 3 3 3 3	11 14 16 22 25 30 32 38 40 45 47 55 58 65 85 140 es.				
6 7 8 9 10 11 12 13 14 15 16 18 19 20 25 38 To 5 6	ooth Fa 6.00 6.91 7.84 8.77 9.71 10.65 11.59 12.54 13.48 14.43 15.38 17.28 13.28 17.28 13.28 13.23 19.18 23.94 36.33 1 0 0th Fac 6.78 8.00	Vith 1 ce at 4.00 5.00	Pitch L 3.00 4.00	d Teet ine .81 2.50 3.25 3.25	2 inche 2.68 2.68 2.94 2.94 3.18 3.49 4.94 5.94 3 3 3 3 3 3 3 3 3 3 3 3 3	11 14 16 22 25 30 32 38 40 45 47 55 58 65 85 140 es. 14 25				
6 7 8 9 10 11 12 13 14 15 16 18 19 20 25 38 T o 5 6 7	ooth Fa 6.00 6.91 7.84 8.77 9.71 10.65 11.59 12.54 13.48 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 15.38 15.39 15.54 15.58 15.54 15.58 15.54 15.58 15.54 15.58 15.58 15.54 15.58 15.54 15.58 15.58 15.54 15.58 15.54 15.58 15.54 15.58 15.54 15.58 15.54 15.54 15.58 15.54 15.54 15.58 15.54 15.58 15.54 15.54 15.58 15.54 15.54 15.54 15.54 15.58 15.54 15.554 15.5555555555	Vith 1 ce at 4.00 5.00	Pitch L 3.00 4.00	d Teet ine .81 2.50 3.25 3.25	2 inche 2.68 2.68 2.94 2.94 2.94 3.18 3.49 4.94 5.94 3 3 3 3 3 3 4 9 4.94 5.94 3 3 4 9 4 5.94 3 4 5.94 3 4 5.94	11 14 16 22 25 30 32 38 40 45 47 55 58 65 58 65 85 140 es. 14 25 27				
6 7 8 9 10 11 12 13 14 15 16 18 19 20 25 38 T o 5 6 7 8	ooth Fa 6.00 6.91 7.84 8.77 9.71 10.65 11.59 12.54 13.48 14.43 15.38 14.43 14.43 15.38 14.43 14.	Vith 1 ce at 4.00 5.00	Pitch L 3.00 4.00	d Teet ine .81 2.50 3.25 3.25	2 inche 2.68 2.68 2.94 2.94 2.94 3.18 3.49 4.94 5.94 3.49 4.94 5.94 3.49 4.94 5.94 3.49 4.94 5.94 3.49 4.94 5.94 3.49 4.94 5.94 3.49 4.94 5.94 3.49 4.94 5.94	11 14 16 22 25 30 32 38 40 45 47 55 58 65 58 65 85 140 				
6 7 8 9 10 11 12 13 14 15 16 18 19 20 25 38 T o 5 6 7	ooth Fa 6.00 6.91 7.84 8.77 9.71 10.65 11.59 12.54 13.48 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 15.38 15.39 15.54 15.58 15.54 15.58 15.54 15.58 15.54 15.58 15.58 15.54 15.58 15.54 15.58 15.58 15.54 15.58 15.54 15.58 15.54 15.58 15.54 15.58 15.54 15.54 15.58 15.54 15.54 15.58 15.54 15.58 15.54 15.54 15.58 15.54 15.54 15.54 15.54 15.58 15.54 15.554 15.5555555555	Vith 1 ce at 4.00 5.00	Pitch L 3.00 4.00	d Teet ine .81 2.50 3.25 3.25	2 inche 2.68 2.68 2.94 2.94 2.94 3.18 3.49 4.94 5.44 5.94 3 3 3 7 inche 3.44 3.68 3.94 3.94	11 14 16 22 25 30 32 38 40 45 47 55 58 65 58 65 85 140 es. 14 25 27				
6 7 8 9 10 11 12 13 14 15 16 18 19 20 25 38 T o 5 6 7 8 9 10 12	ooth Fa 6.00 6.91 7.84 8.77 9.71 10.65 11.59 12.54 13.48 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.45 10.01 12.94 11.70 12.94 15.45	Vith 1 ce at 4.00 5.00	Pitch L 3.00 4.00	d Teet ine .81 2.50 3.25 3.25	2 inche 2.68 2.68 2.94 2.94 2.94 3.18 3.49 4.94 5.94 5.94 3 37 inche 3.44 3.68 3.94 3.94 3.94 3.94 3.94 3.94	11 14 16 22 25 30 32 38 40 45 47 55 58 65 85 140 es. 140 es. 14 25 27 36 32 33 36				
6 7 8 9 10 11 12 13 14 15 16 18 19 20 25 38 T o 5 6 7 8 9 10 12 13	ooth Fa 6.00 6.91 7.84 8.77 9.71 10.65 11.59 12.54 13.48 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.45 10.71 12.94 15.45 16.71	Vith 1 ce at 4.00 5.00	Pitch L 3.00 4.00	d Teet ine .81 2.50 3.25 3.25	2 inche 2.68 2.68 2.94 2.94 2.94 3.18 3.49 4.94 5.44 5.94 3 3 3 7 inch 3.44 3.68 3.94 3.94 3.94 4.44 4.44	11 14 16 22 25 30 32 38 40 45 47 55 58 65 85 140 25 85 140 25 36 32 33 36 36				
6 7 8 9 10 11 12 13 14 15 16 18 19 20 25 38 7 5 6 7 7 8 9 10 12 13 15	ooth Fa 6.00 6.91 7.84 8.77 9.71 10.65 11.59 12.54 13.48 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 13.28 13.28 13.28 14.33 19.18 23.94 36.33 19.18 23.94 36.33 19.18 23.94 36.33 19.18 23.94 36.33 19.18 23.94 11.70 12.94 15.45 16.71 19.24	Vith 1 ce at 4 4.00 5.00 5.00 Vith 1 ce at F	Pitch L 3.00 4.00	d Teet ine .81 2.50 3.25 3.25	2 inche 2.68 2.68 2.94 2.94 2.94 3.18 3.49 4.94 5.94 5.94 3 37 inche 3.44 3.68 3.94 3.94 3.94 3.94 3.94 3.94	11 14 16 22 25 30 32 38 40 45 55 58 65 85 140				
6 7 8 9 10 11 12 13 14 15 16 18 19 20 25 38 T o 5 6 7 8 9 10 12 13	ooth Fa 6.00 6.91 7.84 8.77 9.71 10.65 11.59 12.54 13.48 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.38 14.43 15.45 10.71 12.94 15.45 16.71	Vith 1 ce at 4 4.00 5.00 5.00 Vith 1 ce at F	Pitch L 3.00 4.00	d Teet ine .81 2.50 3.25 3.25	2 inche 2.68 2.68 2.94 2.94 2.94 3.18 3.49 4.94 5.44 5.94 3 3 3 7 inch 3.44 3.68 3.94 3.94 3.94 4.44 4.44	11 14 16 22 25 30 32 38 40 45 47 55 58 65 85 140 14 25 27 36 32 33 36 36				

		Gooly	d Caroo	kata (1)	Oct to					
No. of		Hub	u sproc Hub	keis. Maix.	Cast to Order	Avg.				
Teeth	D)a.		Length	Bore	Matx. Bore	V¥.				
	1	9404	ST-PI	raH4	œ					
(Vith Hardened Teeth) Tooth Face at Pitch Line 1.031 inches.										
7	9.22				3.18	30				
8	10.45	5.50	4.00	3.62	3.68	38				
9 10	11.70 12.94	5.50 5.50	4.00 4.00	3.62 3.62	3.94 4.44	46 55				
11	14.20	0.00		0.02	4.44	62				
12	15.45	5.50	4.00	3.62	4.94 5.44	70				
14 15	17.98 19.24				5.44 ③	90 72				
19	24.30					100				
			ST– P∏ Hardene							
To					31 inche	es.				
5	10.21	0.00	1.00	1.00	0.0.1					
6 7	12.00 13.82	6.00 4.50	4.00 3.00	4.00 2.75	3.94 4.44	33 49				
8	15.68	7.00	5.00	4.56	4.94	84				
9	17.54	7.00			5.44	93				
10 12	19.42 23.18	7.00	5.00	4.56	4.44 6.50	114 148				
13	25.07				3	119				
14	26.96					128				
16 18	30.75 34.55					160 195				
19	36.45					210				
25	47.87					304				
	1	97 CA Vivth I	ST– P⊓ Hardene	d Teet	uud h)					
					25 inch					
6 7	12.00 13.83	6.50	5.00	4.75	4.44	56 61				
8	15.68	6.50	5.00	4.56	4.94	90				
9	17.54				5.44	80				
10 12	19.42 23.18				5.94 ③	95 115				
15	28.86				-	178				
			ST– P∏ Hardene							
To		•			37 inche	s.				
4	7.92				1.94	15				
5 6	9.81 11.59				1.94 2.18	23 24				
7	13.48				2.18	43				
9	17.28					56				
10 11	19.18 21.03				3	68 75				
12	22.98					83				
16	30.60					120				
19	36.33 4	-804	st- Pi	014	OBI	159				
	(V i⁄t h I	ardene	d Toot	h)					
Т			lardene Pitch I		th) 75 inche	s				
3	7.95	55 at				20				
4	10.53	7 50	5.00	5.00	3.18 5.06	44 54				
5 6	13.04 15.57	7.50 7.50	5.00 5.00	5.06 5.06	5.06	54 81				
7	18.12				5.06	71				
8 9	20.66 23.13				5.06 ③	95 130				
10	25.77					145				
11	28.33					193				
12 14	30.68 35.87					200 228				
19	48.63					345				

CAST TOOTH SPROCKETS - (Co nt'd)

	- <u>-</u> `	Stock	ed Shroc	kets ②	Cast to	
b. of ēeth	Pitch Dia.	Hub Dia.	Hub Length	Malx. Bore	Order Max. Bore	Avg. V¥ž.
		1680	ST-PT	CH4C	331	
То	oth Fa	ce at l	Pitch Li	ne 1.3	75 inch	es.
4	10.53				3.44	36
5	13.05				3.44	65
6	15.57				5.94	100
7	18.12					92
8	20.66					118
9	23.21					148
10 12	25.77 30.88					160 240
12		\mathcal{T}	st- Pi	സ്ഥര	<u> </u>	240
			Hardene			
То					250 incl	nes.
6	16.00				7.00	250
7	18.44				7.50	295
8	20.90				3	330
9	23.39					385
10	25.89					440
			IVIFLAN			
		•	ardene			
		e at F	Pitch Lir	ne 11.2	250 incl	
6	16.00				3	490
7	18.44					560
8	20.90					654
9 10	23.39 25.89					750 840
10		\sim	~		~~~~	040
T			ST – PI Ditch I		75 inche	6
8	10.45					s. 30
9	11.70					35
12	15.45					65
13	16.72					70
19	24.30					124
	5		ST- PT			
			ardene			
		ce at	Pitch L	ine .87	75 inche	
10	8.29	-	-	30	6.00	4
12	9.90	-	-	40	6.50	5
18	14.76					65
24	19.64	-	-	84		10
30	24.52					100
40	32.67		st- Pi			165
т.						
10	ioui ra(hain N		87 inch	5.
6	8.00			J. JJI	2.94	34
8	10.45				3.44	43
10	12.94				3.94	49
12	15.46				4.44	85
14	17.98					80
15	19.24					85
16	20.50					94
17	21.77					107
19	24.30					120
			_		_	

(Cont'	d.)												
Nh of	Dtah	Stock	ed Sproc	kets ②	Cast to	A.a.	Nh of	Dtah	Stock	ed Sproc	kets ②	Cast to	A
No.of Teeth	Pitch Dia.	Hub Dia.	Hub Length	N⁄alx. Bore	Order Natx. Bore	Avg. V¥¥.	No.of Teeth	Pitch Dia.	Hub Dia.	Hub Length	N⁄alx. Bore	Order N∕atx. Bore	Avg. V¥X.
			- Pito		1					- Pito		D	
			rdened				_			rdened			
		at Pit	ch Line	1.187	inches					ch Line	1.125		
3	12.06					50	6P-6T	12.00				3	47.9
4	15.72 19.52				5.44 ③	75 115	8P-8T 9P-9T	15.68 17.54					71.3
6	23.24					148		18.48					107.3
7	27.03					190		19.42					115.4
8	30.83					240		21.30					105.0
10							11.5P-23T	22.24					104.5
			- Pita		1		12P-12T	23.14					110.8
			rdened				12.5P-25T						117.9
	_	at Pit	ch Line	1.375				25.07					125.1
5	19.52				6.94 ③	122	13.5P-27T 14P-14T	26.02 26.96					132.5 153.7
6	23.24				9	162		28.86					170.0
7	26.96					200 275	-	30.75					187.2
0			ST- PIT	പം	$\overline{\mathbf{n}}$	275		34.55					225.2
			rdened		u		24P-24T	45.79					363.5
Toot			ch Line) inches	S.				- Pita		D	
6.5-13T	12.89					65.0				rdened		-	
8.5P-17T	-				3	98.2				ch Line	1.125		
9-9T	17.51					80.0	8	10.45 12.95				2.44	25 45
9.5P-19T						115.3	11	14.20				3.18	45 54
10-10T 10.5-21T	19.42					95.0 110.0	12	15.46				3.94	56
11-11T	20.33					105.0	13	16.71				4.44	60
11.5P-23T						127.7	14	17.98				4.94	65
12.5P-25T						141.3	16	20.51				5.44	81
13-13T	25.07					1 30.0	17	21.77				5.94	86
16-16T	30.75					180.0	18	23.04				5.94	91
			- PITO		D		19	24.26				3	95
			rdened				24	30.65	CART	- Pito	1400	-	138
6P-6T	n Face 12.00	at Pit	ch Line I	1.000	Inches 3	s. 47.9				rdened		0	
6.5P-13T					Ŭ	53.1	Toot	n Face	at Pit	ch Line	1.250) inche	S.
8P-8T	15.68					71.3	10	12.94				6.44	58
8.5P-17T						92.2	12	15.45					78
9P-9T	17.54					99.5	13	16.71					82
9.5P-19T						107.3	14	17.98					94
10P-10T						115.4	15 16	19.24 20.50					112
10.5-21T						110.0	19	20.30					140
11P-11T 11.5P-23T						98.3 118.2	15			- Pita	1600	ກ	
12P-12T						1 20.0				rdened			
12.5P-25T						131.5	Toot			ch Line			S.
13P-13T	25.07					138.7	6	12.00					58.5
15P-15T	28.86					155.0	8	15.68				6.44	79
16P-16T	30.75					180.0	9	17.54				3	88
19P-19T						245.9	10	19.42					102
20P-20T	38.36					267.8	11	21.20					105
			T – PITC rdened				11.5-23T 12	22.21 23.18					125 121
Toot			ch Line	, i i i i i i i i i i i i i i i i i i i		5.	12	25.07					142
9.5P-19T				1.120		, 114.8	15	28.86					168
11.5P-23T						113.5	16	30.75					180
12.5P-25T	24.01					127.9			-	-	-	-	
18P-18T						207.0							
27P-27T	1		1	1	1	ı							

27P-27T

SPRODVETS

■ SPROCKETS CAST TOOTH SPROCKETS - (Cont'd.)

S	
Ξ	
X	
Ø	
Æ	

No. of	Pitch	Stocked Sprockets 2			Cast to Order	Avg.
Teeth	Da.		Hub Length		Max. Bore	Avg. V¥.
	8	440A With	ST– P∏ Hardene	10H6	0000 h)	
To					25 inche	es.
6		1	l – – – – – – – – – – – – – – – – – – –			
8	15.88				6.44	94
9	17.54					112
10	19.42					125
11	21.30					140
12	23.18					160
13	25.07					171
15	28.86					200
16	30.75					217
19	36.45					275
		(Vi i th	ST – Pi Hardene	d Teet	h)	
То			Pitch Li	ne 1.1	25 inch	es.
6	18.00				5.94	74
8	23.52				3	150
9	26.31					160
10	29.12					175
	FS (9330/ (Vi i th	ST – Pi Hardene	TCHS d Teet	0000 h)	
To	oth Fac	ce at	Pitch Li	ne 1.2	50 inche	es.
6	18.00				5.94	93
7	20.74				3	120
8	23.52					152
	0)	61 CA (V i/ th	ST– P⊡ Hardene	ICH 6 d Teet	0000 h)	
To	oth Fac	ce at	Pitch Li	ne 1.0	62 inch	es.
6	12.00				5.44	62
8	15.68				5.44	81
	9	eesca Wiath	ST– P⊡ Hardene	ICH9 d Teet	031 h)	
То					75 inche	es.
4	23.53				6.44	195
5	29.14				3	258
6	34.81					325

		Stocke	ed Sproc	kets ②	Cast to	
No.of Teeth	Pitch Dia.	Hub	Hub	Nax.	Order Max.	Avg. V¥%.
ieeui	Lva.		Length	Bore	Bore	VW.
			ST – Pi Hardene			
To					62 inche	26
6	8.08				2.44	24
8	10.56				2.94	38
9	11.81				3.18	40
10	13.07				3.68	45
11	14.34				3.94	50
12	15.61				4.44	60
13	16.88				4.94	68
14	18.16				3	85
16 17	20.71 21.99					95 104
17	21.99					104
24	23.67					178
		2004	ST- P	TCH4	ത	.70
	(Vivth	Hardene	d Teet	h)	
		ce at	Pitch L	ine .68	37 inche	
5	6.81				2.18	12
6	8.00				2.44	23
7	9.22				3.68	72 29
8 9	10.45 11.70				3.68 3.94	29 38
10	12.94				3.94 3.94	40
11	14.19				3.34	40 50
12	15.45					65
14	17.98					77
15	19.24					86
16	20.50					97
18	23.04					115
19	24.30					125
22	28.11					165
24 31	30.65 39.54					190 244
31	39.54 44.62					244 322
55	-	310	ST- P	TO-I6	ത	JLL
	(Vi/th I	hardene	d Teet	h)	
То		ce at l	Pitch Li	ne 1.2	50 inch	
6	12.00				3.94	62
8	15.68				3.94	78
9	17.54				3.95	120
12	23.18				4.44	153
13 14	25.03				3	175
14 16	26.96 30.75				9	190 225
25	47.87					350
23		2220	ST- PI	TOH 1	2000	550
	(Vith I	Hardene	d Teet	h)	
То	oth Fac	ce at l	Pitch Li	ne 1.0	00 inch	es.
6 8	24.00				5.94	157
	31.36					210

				-		
No. of	Pitch	Stocke	ed Sproc	kets ②	Cast to Order	Avq.
Teeth	Da.	Hub Dia.	Hub Length	Max. Bore	N∕ax.	7∿9. V¥X.
			•		Bore	
	2	12/4/04 Vi/th 1	ST – Pl Hardene	d Teet	h)	
To	oth Fac	ce at l	² itch Li	ne 1.3	75 inche	es.
6	12.00					50
8	15.68				6.44	62
10	19.42				3	95
12	23.18					133
13	25.07					150
15	28.86					186
16	30.76					220
24	45.97					250
			ST-P			
			ardene			
-		ce at l	Pitch Li	ne 1.1	25 inch	
6	12.00				4.94	50
8	15.68				7.00	90
16	30.76					200
20	38.36					260
	a	5004	ST-P	TCH2	500	
-			ardene			
lo					50 inche	s.
6	5.00	o avai	lable in	polyrr	enc.	5
7	5.76					9
8	6.53					9 10
10	8.09	4.00	3.00	2.50	2.68	13
11	8.87	4.00	3.00	2.50	2.68	16
12	9.66	4.00	3.00	2.50	3.18	18
14	11.24	1.00	3.00	2.00	5.10	23
15	12.03				3.94	28
16	12.03				5.54	30
10	12.01					50

All dimensions given in inches and weight in Lbs. ^① Hub one side. All other hubs are long central. ^② If no hub data is listed, sprocket is cast to order.

[®] Consult Rexnord for max. bore information.

Note: Dimensions are subject to change. Certified dimensions of ordered material are furnished upon request.

SPROCKETS CAST TRACTION WHEELS AND DRUM FLANGED TRACTION WHEELS

Traction Wheels are used primarily on the headshafts of bucket elevators and elevating conveyors to protect the system from obstructions Providing the frictional grip between the chain and the traction wheel is sufficient to transmit the power under normal load. In the case of obstruction, the chain will slip on the wheel, and avoid damaging some machinery or part of the system.

Drum Flanged Traction Wheels are used on drag chain conveyors where discharge is over the head wheel.

Uhit

Nb.

ΟD

10.25

Materials. Traction wheels are furnished cast and fabricated steel. Segmental rim traction wheels are available with fabricated bodies See pages 90-93.

Standard Sprocket Bore Tolerances; Keyseat and Set-screws; and Hubs. See page 140 for key and set screw sizes The corresponding paragraphs on page 90 applies to traction wheels

To determine a shaft's pitch diameter, add to its outside diameter, the barrel diameter of the chain to be used.

NOTE: For Replaceable Segmental-Rim Traction Wheels, see pages 90-93.

Drum

Vividth 8.88 16.38 175.0

₩.

Face

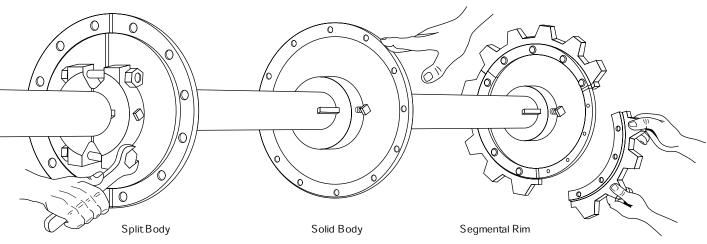
V%i/dth

X =

HDN

Unit	ΟD	X =	Face	Drum	V¥.
No.		HDN	Viv/dth	Vi⁄dth	
	10.50	х	1.25	-	45.0
	14	х	1.25	-	60.0
	15.50	х	1.25	-	68.0
	16	х	1.25	-	72.0
	17	х	1.25	-	79.0
SSE	18.25	х	1.25	-	86.0
	20	х	1.25	-	95.0
	22	х	1.25	-	105.0
	24	х	1.25	-	120.0
	27.75	х	1.25	-	140.0
	31	х	1.25	-	160.0
	12	х	2.13	-	65.0
	16	х	2.13	-	90.0
	19.75	х	2.13	-	109.0
844	22.25	х	2.13	-	130.0
	23.75	х	2.13	-	148.0
	27.75	х	2.13	-	172.0
	29	х	2.13	-	190.0
	15	х	1	-	62.0
720	15.50	х	1	-	65.0
	18.25	х	1	-	85.0
	29	х	2.75	-	170.0
	21.50	х	2.75	-	187.0
S866	26	х	2.75	-	200.0
3000	27.75	х	2.75	-	218.0
	29.50	х	2.75	_	225.0
	30	х	2.75	-	236.0
	8	х	.69	_	24.0
955					

	J				e 18 ovo
Uhit No.	ΟD	X = HDN	Face Vi v dth	Drum Vi i dth	VW.
	10	х	.94	-	30.0
	12	х	.94	-	45.0
	1250	х	.94	-	50.0
	1325	х	.94	_	580
	14	х	.94	-	620
78	15	х	.94	-	65.0
	1550	х	.94	_	680
	16	х	.94	-	70.0
	18	х	.94	-	75.0
	19	х	.94	-	80.0
	20	X	.94	-	85.0
	12	X	1.88	_	50.0
	1350	X	1.88		60.0
	14	X	1.88		630
	14.63	X	1.88		680
	15.75	x	1.88	_	780
	1675	x	1.88	_	89.0
	1075		1.88	_	920
	18	X X	1.88	_	100.0
102B	1975		1.88	_	1080
	21	X X	1.88	-	117.0
				_	
	22	Х	1.88	-	127.0
	23	Х	1.88	-	1390
	2375	Х	1.88	-	1430
	27.63	X	1.88	-	1600
	29.63	Х	1.88	-	1660
	33	Х	1.88	-	1750
H102	11.50		625	11.50	1850
	14.63		625	11.50	230.0
	7	х	1.13	-	25.0
	9.63	Х	1.13	-	380
	14.63	Х	1.13	-	49.0
	16	Х	1.13	-	60.0
	17	Х	1.13	-	70.0
103	18	Х	1.13	-	75.0
	20	х	1.13	-	90,0
	22	Х	1.13	-	1150
	22.50	х	1.13	-	1250
	24	х	1.13	-	1350
	29.38	х	1.13	_	170.0
	10.50		4	12	125.0
	1238		4	12	1450
	14		4	12	170.0
H104	16		4	12	205.0
	17.75		4	12	250.0
	19.75		4	12	305.0
	2013		4	12	345.0


	10.23		0.00	10.00	175.0
	14		8.88	16.38	250.0
H110	15.88		8.88	16.38	290.0
	17.75		8.88	16.38	335.0
	19.63		8.88	16.38	365.0
	9.50	х	2.25	-	50.0
	14.56	х	2.25	-	85.0
	15.50	х	2.25	-	91.0
	18	х		-	105.0
	20	х	2.25	-	135.0
111	22	х	2.25	-	143.0
	23	х	2.25	-	146.0
	23.75	х	2.25	-	149.0
	26	х	2.25	-	165.0
	29.50	х	2.25	-	198.0
	30.75	х	2.25	-	210.0
1 11 10	16.75		9	16.50	200.0
H112	19.25		9	16.50	230.0
	16.88		13	20.50	395.0
H116	19		13	20.50	485.0
	21.75		13	20.50	550.0
1 110	13.88		13	20	495.0
H118	16.50		13	20	560.0
	13	х	2.75	-	120.0
	13.75	х	2.75	_	124.0
	16	х	2.75	-	128.0
	16.25		2.75	14	510.0
	17	х	2.75	-	138.0
	18	х	2.75	-	147.0
132	18.25		2.75	14	570.0
13£	20.25		2.75	14	620.0
	21.63	х	2.75	-	186.0
	22	х	2.75	-	190.0
	24	х	2.75	-	205.0
	26.19	х	2.75	-	210.0
	27.75	х	2.75	-	225.0
	30	х	2.75	_	280.0
	13.88		11.13	22	440.0
	16.25		11.13	22	510.0
H480	18.75		11.13	22	540.0
	21.13		11.13	22	600.0
	23.75		11.13	22	630.0

SEGMENTAL RIM SPROCKETS AND TRACTION WHEELS

Segmental sprockets and traction wheels significantly reduce the labor and down time associated with replacing worn standard type units. Worn segments can be replaced one at a time without removing the chain, disassembling shaft and/or bearing assemblies or realigning hub placement.

Sprockets and traction wheel rims are made of hardened steel and may be furnished with split or solid hub bodies.

Solid Hub Bodies

Solid hub bodies are recommended for new installations. They are accurately machined of close-grained cast iron. The bodies can be made of steel, but dimensions will differ.

Split Hub Bodies

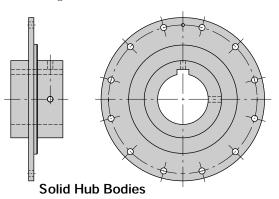
Split hub bodies can be easily installed on existing installations without removing the shaft, bearings, or chain. They are accurately machined of close-grained cast iron. A complete set of hub bolts and nuts included. The bodies can be made of steel, but dimensions will differ.

Traction Wheels vs. Sprockets at the Head Shaft

When properly applied, the use of a traction wheel at the head end of a centrifugal elevator will result in an increase in both chain and wheel life. In addition, the traction wheel will minimize peak chain tensions under impact or starting conditions.

Successful application of a traction wheel is dependent upon a frictional force between the traction wheel and the chain bushing which is great enough to handle the applied chain load without excessive slippage. Factors which can detract from the effectiveness of a traction wheel are:

- 1. Handling material with lubricating qualities.
- 2. Heavy digging loads.
- 3. Handling very dense material.


Dry and abrasive materials, on the other hand, have the desirable effect of increasing the coefficient of friction. Traction wheels have been used very successfully in the cement mill industry. Chain with rollers should not be used with a traction wheel.

SEGMENTAL RIM SPROCKETS AND TRACTION WHEELS – (Cont'd.)

Solid Hub Bodies

Solid hub bodies are recommended for new or existing installation where it is expedient to install a solid hub to save added cost and weight of a split hub.

Solid hub bodies can be made of cast iron or fabricated steel. The outer rim of both cast and fabricated steel hub bodies is machined to exact concentricity and the flange base is machined to provide a mating surface for the rim. This insures correct fit and proper installation of segmental traction wheel and sprocket rims. Hubs are central with the center line of rims. Fabricated steel bodies are recommended for use in severe applications, such as cement mill, to provide maximum fatigue and wear life.

CAST SOLID BODIES¹

Body No. ^②	Bore Size	Hub Length	Wt.
	1.94	4.25	43
10	244	4.25	42
	294	4.25	41
	3.44	6.00	63
	3.94	6.00	60
	4.44	6.00	56
	1.94	4.25	62
	244	4.25	60
	294	4.25	58
12	3.44	6.00	90
	3.94	6.00	85
	4.44	6.00	80
	4.94	6.50	96
	1.94	3.25	80
	244	5.00	86
	294	5.00	97
	3.44	5.00	94
	3.94	6.50	139
16	4.44	6.50	134
	4.94	6.50	127
	5.44	7.75	189
	5.94	7.75	180
	6.44	8.50	225
	6.94	8.50	272
	244	5.00	140
	294	5.00	138
	3.44	5.00	134
	3.94	6.50	180
20	4.44	6.50	174
20	4.94	6.50	168
	5.44	7.75	229
	5.94	7.75	220
	6.44	9.50	323
	6.94	9.50	310

FABRICATED SOLID BODIES

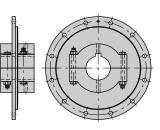
Body No. ²	Bore Size	Hub Length	Wt.
	1.94	3.75	44
	2.44	3.75	44
	2.94	3.75	43
10	3.44	3.75	41
	3.94	3.75	38
	4.44	6.50	61
	4.94	6.50	55
	1.94	4.25	65
	2.44	4.25	63
	2.94	4.25	61
	3.44	4.25	58
12	3.94	4.25	54
	4.44	6.00	87
	4.94	6.00	79
	5.44	7.75	110
	5.94	7.75	100
	1.94	5.00	105
	2.44	5.00	103
	2.94	5.00	100
16	3.44	5.00	96
	3.94	5.00	92
	4.44	7.00	116
	4.94	7.00	108
	5.44	7.00	136
	5.94	7.00	127
	6.44	8.50	178
	6.94	8.50	165
	7.44	8.50	186
	7.94	8.50	172
	8.44	10.50	259
	1.94	5.50	157
	2.44	5.50	154
	294	5.50	151
	3.44	5.50	147
	3.94	5.50	142
	4.44	7.75	169
	4.94	7.75	161
20	5.44	7.75	193
	5.94	7.75	183
	6.44	8.50	225
	6.94	8.50	213
	7.44	8.50	213
	7.94	8.50	234
	8.44	8.50	247
	9.94	11.50	300
	3.34	11.50	3.0

FABRICATED SOLID BODIES (Cont'd.)

Body No. ²	Bore Size	Hub Length	Wt.
	1.94	5.50	250
	2.44	5.50	289
	2.94	5.50	244
	3.44	5.50	240
	3.94	5.50	235
	4.44	7.75	262
25	4.94	7.75	254
25	5.44	7.75	286
	5.94	7.75	276
	6.44	8.50	314
	6.94	8.50	301
	7.44	8.50	322
	7.94	8.50	308
	8.44	11.50	414
	1.94	5.50	325
	2.44	5.50	375
	2.94	5.50	448
	3.44	5.50	444
	3.94	5.50	440
	4.44	8.50	459
35	4.94	8.50	452
55	5.44	8.50	478
	5.94	8.50	469
	6.44	8.50	518
	6.94	8.50	506
	7.44	8.50	526
	7.94	8.50	512
	8.44	11.50	619

All dimensions given in inches and weight in Lbs.

© Steel bodies are recommended for use with RS856, ER956, ER857, ER859, ER864, SBX856, SBX2857, SBX2859 and SBX2864 rims used in severe service such as cement mill elevators.


 $^{\textcircled{0}}$ Body no. represents bolt circle diameter. See page 93 for bolting information .

SEGMENTAL RIM SPROCKETS AND TRACTION WHEELS – (Cont'd.)

Split Hub Bodies

Split hub bodies can be easily installed in existing applications without removing the shaft, bearing or chain. Split hub bodies can be furnished in cast iron or fabricated steel. Complete set of hub bolts and nuts included.

The outer rim of both cast and fabricated steel hub bodies is machined to precise concentricity and the flange base is machined to provide a mating surface for the rim. This insures correct fit and proper installation of segmental traction wheels and sprocket rims. Hubs are central with the center line of rims.

Fabricated steel bodies

Wt

109

are recommended for use in severe applications, such as cement mill, to provide maximum fatigue and wear life.

BODY BOLTING

25

CAST SPLIT BODIES¹

Body No. ^②	Bore Size	Hub Length	Wt
10	1.94	5.63	53
10	2.44	5.63	51
	1.94	5.63	75
	2.44	5.63	72
12	294	7.00	125
	3.44	7.00	120
	3.94	7.00	115
	1.94	6.50	97
	2.44	6.50	125
	294	7.25	168
16	3.44	7.25	164
	3.94	7.25	158
	4.44	8.25	237
	4.94	8.25	229
	1.94	4.38	126
	2.44	5.00	163
	294	5.00	160
	3.44	5.00	157
	3.94	6.50	235
20	4.44	6.50	229
20	4.94	6.50	223
	5.44	7.63	328
	5.94	7.63	319
	6.44	11.13	641
	6.94	11.13	626
	7.44	11.13	610

FABRICATED SPLIT BODIES Body No.⁽²⁾ Bore Size Hub Length

6.75

1.94

Bolt Bolt Torque Body No. **Bolt Size Quantity** Ft /Lbs. 10 12 5/8 180 12 5/8 180 12 3/4 16 12 320 24 3/4 320 20

35241710Torque values based on dry conditions.

24

1 Ft. Lb. Torque = 1 Lb. Force With 1 Ft. Lever Arm.

1

710

	2.44	6.75	105
	2.94	6.75	101
12	3.44	6.75	97
	3.94	6.75	91
	4.44	7.75	134
	4.94	7.75	126
	1.94	6.75	145
	244	6.75	142
	2.94 3.44	6.75 6.75	138 133
16	3.94	6.75	127
10	4.44	7.75	169
	4.94	7.75	161
	5.44	7.75	212
	5.94	7.75	202
	1.94	6.75	198
	2.44	6.75	195
	2.94	6.75	191
	3.44	6.75	186
	3.94	6.75	181
	4.44	7.75	217
20	4.94	7.75	209
	5.44	7.75	271
	5.94	7.75	261
	6.44	9.50	361
	6.94	9.50	347 367
	7.44 7.94	875 875	352
	7.94 8.44	8.75	430
	1.94	6,75	289
	2.44	6.75	286
	2.94	6.75	282
	294 3.44	6.75	282
	3.44	6.75	277
25	3.44 3.94 4.44 4.94	6.75 6.75 7.75 7.75	277 272 307 299
25	3.44 3.94 4.44 4.94 5.44	675 675 7.75 7.75 7.75 7.75	277 272 307 299 359
25	3.44 3.94 4.44 4.94 5.44 5.94	675 675 7.75 7.75 7.75 7.75 7.75	277 272 307 299 359 349
25	344 394 4.44 4.94 5.44 5.94 6.44	675 675 7.75 7.75 7.75 7.75 8.75	277 272 307 299 359 349 447
25	3.44 3.94 4.44 4.94 5.44 5.94 6.44 6.94	675 675 7.75 7.75 7.75 7.75 875 875 875	277 272 307 299 359 349 447 433
25	3.44 3.94 4.44 5.94 5.44 5.94 6.44 6.94 7.44	6.75 6.75 7.75 7.75 7.75 7.75 8.75 8.75 8.75 8	277 272 307 299 359 349 447 433 453
25	3.44 3.94 4.44 5.44 5.94 6.94 6.94 7.44 7.94	675 675 7.75 7.75 7.75 7.75 875 875 875 875 875	277 272 307 299 359 349 447 433 453 438
25	3.44 3.94 4.44 5.44 5.94 6.44 6.94 7.44 7.94 7.44	675 675 7.75 7.75 7.75 875 875 875 875 875 875 875	277 272 307 299 359 349 447 433 453 453 453 513
25	3.44 3.94 4.44 5.94 5.94 6.44 6.94 7.44 7.94 7.94 1.94	675 675 7.75 7.75 7.75 875 875 875 875 875 875 875 875	277 272 307 299 359 349 447 433 433 438 513 375
25	3.44 3.94 4.44 5.94 5.94 6.44 6.94 7.44 7.94 7.44 1.94 2.44	675 675 7.75 7.75 7.75 875 875 875 875 875 875 875 875 875 8	277 272 307 299 359 349 447 433 453 438 513 375 372
25	3.44 3.94 4.44 5.94 5.94 6.44 6.94 7.44 7.94 7.94 1.94	675 675 7.75 7.75 7.75 875 875 875 875 875 875 875 675 675 675	277 272 307 299 359 349 447 433 433 438 513 375
25	3.44 3.94 4.44 5.94 5.94 6.44 6.94 7.44 7.94 7.94 7.44 1.94 2.94	675 675 7.75 7.75 7.75 875 875 875 875 875 875 875 875 875 8	277 272 307 299 359 349 447 433 453 438 513 375 372 487
25	3.44 3.94 4.44 5.44 5.94 6.44 6.94 7.44 7.94 7.44 7.94 1.94 2.94 2.94 3.44	675 675 7.75 7.75 7.75 875 875 875 875 875 875 875 675 675 675 675	277 272 307 299 359 349 447 433 453 453 453 438 513 375 372 487 482
	3.44 3.94 4.44 5.44 5.94 6.44 6.94 7.44 7.94 7.44 1.94 2.94 3.44 3.94 4.44 4.94	675 675 7.75 7.75 875 875 875 875 875 875 875 675 675 675 675 675	277 272 307 299 359 349 447 433 453 438 513 375 372 487 487 487 482 476 511 503
25	3.44 3.94 4.44 5.44 5.94 6.44 6.94 7.44 7.94 7.44 7.94 7.44 2.94 3.44 3.94 4.44 4.94 5.44	675 675 7.75 7.75 7.75 875 875 875 875 875 875 875 675 675 675 675 675 675 7.75 7.75 7.7	277 272 307 299 359 349 447 433 453 438 513 375 372 487 482 487 482 476 511 503 564
	$\begin{array}{r} 3.44\\ 3.94\\ 4.44\\ 4.94\\ 5.44\\ 5.94\\ 6.44\\ 6.94\\ 7.44\\ 7.94\\ 7.94\\ 7.94\\ 7.44\\ 2.94\\ 2.94\\ 3.94\\ 4.94\\ 3.94\\ 4.94\\ 5.44\\ 5.94\\ \end{array}$	675 675 7.75 7.75 875 875 875 875 875 875 875 675 675 675 675 675 675 675 675 7.75 7.	277 272 307 299 359 349 447 433 453 453 453 375 372 487 482 476 511 503 564 554
	3.44 3.94 4.44 4.94 5.44 6.94 7.44 7.94 7.44 7.94 2.94 2.44 2.94 3.44 3.94 4.44 4.94 5.44 5.94 6.44	675 675 7.75 7.75 875 875 875 875 875 875 875 675 675 675 675 675 675 675 7.75 7.75	277 272 307 299 359 349 447 433 453 453 453 453 375 375 375 375 487 482 487 482 476 511 503 564 554 652
	3.44 3.94 4.44 5.94 5.94 6.94 7.44 7.94 7.44 7.94 1.94 2.94 3.44 3.94 4.44 4.94 5.94 6.94 6.94	675 675 7.75 7.75 875 875 875 875 875 875 875 675 675 675 675 675 675 675 7.75 7.75	277 272 307 299 359 349 447 433 453 453 438 513 375 375 375 375 375 487 482 476 511 503 564 554 652 638
	3.44 3.94 4.44 4.94 5.44 5.94 6.94 7.44 7.94 7.44 1.94 2.44 2.44 2.94 3.44 3.94 4.44 4.94 5.94 6.94 5.94 6.94 7.44 7.44 3.94 3.94 4.94 5.94 6.94 7.44 3.94 3.94 4.94 3.94 4.94 5.94 6.94 7.44 3.94 3.94 4.94 5.94 6.94 7.44 3.94 3.94 4.94 5.94 6.94 7.44 3.94 3.94 4.94 5.94 6.94 7.44 3.94 7.94 3.94 7.94 3.94 7.94 3.94 3.94 4.94 5.94 6.94 5.94 6.94 7.44 7.94 7.94 7.44 7.94 7.44 7.94 7.44	675 675 7.75 7.75 875 875 875 875 875 875 875 675 675 675 675 675 675 675 7.75 7.75	277 272 307 299 359 349 447 433 453 438 513 375 375 375 375 375 375 487 482 476 511 503 564 554 652 638 657
	3.44 3.94 4.44 4.94 5.44 5.94 6.44 6.94 7.44 7.94 2.94 3.94 4.44 4.94 5.94 6.44 6.94 5.94 6.44 6.94 7.44 7.94 7.44 7.94 7.44 7.94 7.44 7.94 7.44 7.94 7.94 7.44 7.94	675 675 7.75 7.75 875 875 875 875 875 875 875 675 675 675 675 675 675 675 675 675 6	277 272 307 299 359 349 447 433 453 438 513 375 372 487 482 476 511 503 564 554 652 652 652 652 652 657 642
	3.44 3.94 4.44 4.94 5.44 5.94 6.94 7.44 7.94 7.44 1.94 2.44 2.44 2.94 3.44 3.94 4.44 4.94 5.94 6.94 5.94 6.94 7.44 7.44 3.94 3.94 4.94 5.94 6.94 7.44 3.94 3.94 4.94 3.94 4.94 5.94 6.94 7.44 3.94 3.94 4.94 5.94 6.94 7.44 3.94 3.94 4.94 5.94 6.94 7.44 3.94 3.94 4.94 5.94 6.94 7.44 3.94 7.94 3.94 7.94 3.94 7.94 3.94 3.94 4.94 5.94 6.94 5.94 6.94 7.44 7.94 7.94 7.44 7.94 7.44 7.94 7.44	675 675 7.75 7.75 875 875 875 875 875 875 875 675 675 675 675 675 675 675 7.75 7.75	277 272 307 299 359 349 447 433 453 438 513 375 375 375 375 375 375 487 482 476 511 503 564 554 652 638 657

All dimensions given in inches and weight in Lbs.

D Steel bodies are recommended for use with RS856, ER956, ER857, ER859, ER864, SBX856, SBX2857, SBX2859 and SBX2864 rims used in severe service such as cement mill elevators.

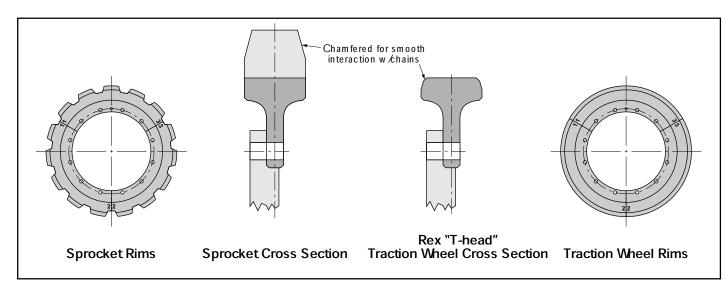
⁽²⁾ Body no. represents bolt circle diameter.

92

SEGMENTAL RIM SPROCKETS AND TRACTION WHEELS – (Cont'd.)

Cast Rims

Each traction wheel rim and sprocket rim is induction case-hardened to the highest practical hardness around the entire circumference. The hardness depth is controlled to give the longest wear life, yet leaving the interior tough and ductile – perfect qualities for absorbing the impact and shock loads encountered in "elevator-conveyor" service.


Segmental sprocket rims can be reversed (back side of tooth becomes the working face), in order to maximize wear life.

Segmental traction wheel rims can be easily installed, no need to even remove the chain in order to replace worn out rims. No burning or cutting is necessary. Our "T" head traction wheel design moves the center of the chain load more closely over the body flange, thus reducing the possibility of hub fatigue problems.

Segmental rim traction wheels are split with cuts in the rims that are made diagonally. These diagonal cuts eliminate the possibility of the segments spalling or chipping at the line of split as a result of chain bushing or barrel line impact.

The sides of the segmental traction wheel & sprocket rims are chamfered to allow the chain to "enter" and "leave" smoothly without damaging the chain components.

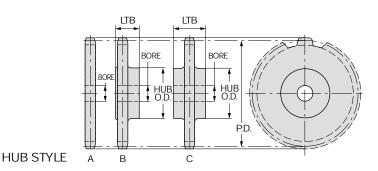
All rims are furnished with high strength UNC thread nuts and bolts as standard.

Available Cast Traction Wheel Rims (with Bolts, Washers and Nuts)

Rex Chain No.	Link-Belt Chain No.	No. of Teeth	Use Body No. ①	Pitch Dia. In.	Wt Each Lbs.
S110 A102B S102B A102 ¹ /2 S102 ¹ /2	SBS110 C102B SBS102B C102 ¹ /2 SBS102 ¹ /2	24	16	115	1.75
ES111 A111	SBS111 C111	22 24 26 30	16 16 20 20	110 130 140 165	2.25
RS 856 ER 857 ER 956	SBX856 SBX2857	20 22 24 28 30	12 16 20 20 20	90 115 145 155 170 185	275
ER859 ER864	SBX2859 SBX2864	24 26 30 36 42 49	16 20 20 35 35	165 175 235	3.50

NOTE: Fabricated steel rims are readily available for most every chain. Consult Rexnord ^① Body No. represents bolt circle diameter in inches.

SPROCKETS POLYMERIC SPROCKET AND IDLER WHEELS


Cast Body Segmental Polymeric Sprocket

Split Polymeric Sprocket

Dished Sprocket

€OF SPROCKET-DISH

POLYMERIC SPROCKET AND **IDLER WHEELS**

Polymeric chains will provide the ultimate in service when operated with properly designed sprockets. Just like polymeric chains differ from metal chains, so do polymeric sprockets differ vastly from metal sprockets.

The polymeric sprocket must be designed for the particular chain, considering the chain's special capability and intended use. Many factors are taken into account when designing these sprockets: Tooth pressure angle, pitch line clearance, bottom diameter, pocket and topping radii and tooth working face, to name a few. A poor design in any of these areas may cause chain failure.

Rex® Polymeric chain run better on Rex Polymeric sprockets. Polymeric sprockets resist corrosion and reduce friction, maximizing both chain and sprocket life. These quiet running, shock absorbing sprockets also improve system reliability.

The American Chain Association recommends that "Sprockets normally be obtained from the manufacturer of the chain involved." The Association further cautions that "worn sprockets should always be replaced when new chain is installed ... "

Features

- Designed specifically for use with polymeric chains for greatest chain and sprocket life.
- Made from super tough urethane. Rex sprockets resist particle embedment (and the rapid chain wear that can result), a common problem with other plastic materials.
- One-piece design Rex polymeric sprockets are all polymeric, or available with a steel insert cast integral with the body.
- Absorbs vibration and large shock loads better than steel sprockets, thus protecting the chain and providing quieter operation.
- **Reduces friction**, which improves chain life.
- Split sprockets most sprockets are available in . split design for ease of installation.

POLYMERIC SPROCKET AND IDLER WHEELS – (Cont'd.)

									inches. Weig	hts are in pounds.
	Number of			Hub ³			Bore Cap	acities		
		umber of P. D.				W/O Ke	y 🛛	With Ke	ey	Weight ³
	recui		0. D.	L. T	. В.	Max.	Mir	า.	Max.	
	7	3.76	250	1.	75	1.50	.8	8	1.25	.6
	8	4.26	300	1.	75	200	.8	8	1.25	.9
N45 Polymeric Sprocket	9	4.77	300	1.	75	200	1.C	α	1.25	1.0
Pitch 1.630	10	5.27	375	1.	75	275	1.1	3	2.63	20
Tooth Face at Pitch Line .75	11	5.79	375	1.	75	275	1.1	3	2.63	21
Hub Style B	12	6.30	375	1.	75	275	1.2	25	2.63	23
Mandrel Bore .44	13	6.81	4.75	1.	75	375	1.2	25	2.88	29
	14	7.33	4.75	1.	75	375	1.2	25	2.88	3.1
	15	7.84	4.75	1.	75	375	1.2	25	2.88	3.3
	16	8.36	4.75	1.	75	375	1.3	8	2.88	3.5
	17	8.87	4.75	1.	75	375	1.5	ю	2.88	3.7
	18	9.39	4.75	1.	75	375	1.5	iO	2.88	4.0
	7	5.32	375		00	275	1.2	-	2.25	1.1
	8	6.03	375	2.	00	275	1.2	25	2.25	1.3
N77 Polymeric Sprocket	9	6.75	4.75		∞	375	1.2		2.88	1.2
Pitch 2308	10	7.47	4.75		00	375	1.5	-	2.88	1.5
Tooth Face at Pitch Line .75	11	819	4.75	2	00	375	1.5	ю	2.88	1.7
Hub Style B	12	8.92	4.75	2	00	375	1.5	Ö	2.88	20
Mandrel Bore .44	13	9.64	4.75	2	00	375	1.5	Ю.	2.88	23
	14	10.37	4.75	2	00	375	1.6	3	2.88	27
	15	11.10	4.75	2.	∞	375	1.7	'5	288	30
					1					
N77 Polymeric Sprocket Tooth sprocket	Number of									
with Cast Iron Body	Teeth	P. D.	Hub Di	ameter	L. 1	Г. В.	Bolt Circle	- r	Max. Bore	Weight ³
Pitch 2.308	recui									-
Tooth Face at Pitch Line .75								-		
Hub Style C	39	28.68	(2	(2	25		2	2
Deep or Shallow Dished										

^① Based upon keyed driver sprocket used with polymeric chain at the maximum rated working load. Consult Rexnord for information on steel hub inserts.
 ^② Contact factory for hub sizes and weights.
 ^③ Data without steel hub inserts.

IMPORTANT: Polymeric sprockets with steel hub inserts are recommended for applications using metal chains.

POLYMERIC SPROCKET AND IDLER WHEELS - (Cont'd.)

Dimensions are in inches. Weights are in pounds.

	1			L.L.S			Bore Capaci	ties	
	Number of	P. D.	ľ	lub3		W/O Ke	y Wi	th Key ^①	Weight ³
	Teeth		0. D.	L. T	. B.	Max.	Min.	Max.	1
	7	6.01	375	2	25	275	1.25	2.25	24
	8	6.82	375	2.	25	275	1.50	2.25	3.1
	9	7.63	4.75	2	25	375	1.50	2.75	4.7
	10	8.44	4.75	2	25	375	1.50	2.75	5.0
	11	9.26	4.75	2	25	375	1.63	2.75	5.7
	12	10.08	4.75	2	25	375	1.75	2.75	6.2
	13	10.90	4.75	2.	25	375	1.88	2.75	6.7
	14	11.73	4.75	2.	25	375	1.88	275	7.3
N78 Polymeric Sprocket	15	12.55	4.75	2	25	375	1.88	2.75	80
Pitch 2.609	16	13.37	7.00	4.	00	600	1.50	4.00	15.8
Tooth Face at Pitch Line .94	17	14.20	7.00	4.	∞	600	1.63	4.00	16.7
Hub Style B 7-15 Teeth	18	15.03	7.00	4.	00	600	1.63	4.00	17.4
Hub Style C 16-31 Teeth	19	15.85	7.00	4.	∞	600	1.63	4.00	182
Mandrel Bore .94	20	16.68	7.00		00	600	1.75	4.00	19.3
	21	17.51	7.00		00	600	1.88	4.00	20.2
	22	18.33	7.00		00	600	1.88	4.00	21.4
	23	19.16	7.00		00	600	1.88	4.00	22.3
	24	19.99	7.00		00	600	1.88	4.00	22.5
	25	20.82	7.00		00	600	1.88	4.00	24.6
	26	21.64	7.00		00	600	1.88	4.00	26.1
	27	22.47	7.00		00	600	1.88	4.00	27.1
	28	23.30	7.00		00	600	1.88	4.00	286
	29	24.13	7.00		∞	600	1.88	4.00	30.3
	30	24.13	7.00		00	600	1.88	4.00	31.4
	31	24.90	7.00		00	600	1.88	4.00	33.0
	31	25.79	7.00	4.		600	1.00	4.00	33.0
N78 Polymeric Sprocket Segmental Tooth Sprocket with Cast Iron Body Pitch 2.609	Number of Teeth	P. D.	Hub Di	ameter	L. 1	. В.	Bolt Circle	Max. Bore	Weight [®]
Tooth Face at Pitch Line .94	40	33.25	(2)	0	2	30	2	2
Hub Style C	43	35.65					30		
Deep or Shallow Dished Contact Factory For Hub	48	39.89					30		
Sizes and Weights	48 54	44.87					30		
5	- 34	44.07					30		
N78 All Polymeric Dished Sprocket with Segmental Tooth	Number of Teeth	P. D.	Max. Dian		L. 1	. В.	Bolt Circle	Max. Bore	Weight ³
Pitch 2609	40	33.25	80	SD	7.	31	30	5.44	81
Tooth Face at Pitch Line .94	40	33.25		CSD		00	30	4.94	93
Hub Style C Shallow or Deep Dished	40								92
Shallow Dished (SD)	_	35.65		SD.		31	30	5.44	
1.5", 1.75", <i>2</i> "	43	35.65		76D		00	30	4.94	101
• Deep Dished (DD)	48	39.89	80	SD	7.	31	30	5.44	112
6.25", 6.5"	48	39.89	100	3SD		00	30	4.94	122

⁽¹⁾ Based upon keyed driver sprocket used with polymeric chain at the maximum rated working load. Consult Rexnord for information on steel hub inserts.
 ⁽²⁾ Contact factory for hub sizes and weights.
 ⁽³⁾ Data without steel hub inserts.

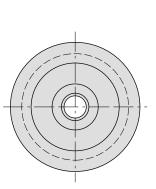
IMPORTANT: Polymeric sprockets with steel hub inserts are recommended for applications using metal chains.

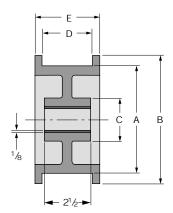
POLYMERIC SPROCKET AND IDLER WHEELS – (Cont'd.)

	Number of	P. D.		Hub [®]		W/O Key	Bore Capacit	re in inches. Weigh ties th Key®	
	Teeth	P. D.	0.0		в	,			Weight [®]
		7.00	0. D.	L. T.		Max.	Min.	Max.	1.0
	7	7.09	4.75		75	3.75	1.25	250	4.6
N82 Polymeric Sprocket	8	804	4.75		75	3.75	1.38	2.50	5.2
Pitch 3.075	9	8.99	6.00		00	5.00	1.50	4.25	6.0
Footh Face at Pitch Line 1.13	10	9.95	7.00		00	5.00	1.50	4.25	6.8
Hub Style B 7-8 Teeth	11	10.91	7.00		20	5.00	1.63	4.25	7.6
Hub Style C 9–18 Teeth	12	11.88	7.00		20	5.00	1.75	4.25	86
Vandrel Bore .94	13	12.85	7.00	4.0	20	6.00	1.88	5.00	9.7
	14	13.82	7.00	4.0	20	6.00	1.88	5.00	10.8
	15	14.79	7.00	4.0	20	6.00	1.88	5.00	11.9
	16	15.76	7.00	4.0	00	6.00	1.88	5.00	13.0
	17	16.73	7.00	4.0	20	6.00	1.88	5.00	14.1
	18	17.71	7.00	4.0) CC	6.00	1.88	5.00	15.2
V82 Segmental Sprocket Tooth sprocket with Cast Iron Body Pitch 3.075 Tooth Face at Pitch Line 1.13	Number o Teeth	F P. D.	Hub Di	ameter	L. T	. В.	Bolt Circle	Max. Bore	Weight [®]
Hub Style C Deep or Shallow Dished	36	35.28	G	٥		2	25	0	2
N82 Polymeric Dished Sprocket with Segmental Teeth Pitch 3.075	Number o Teeth	f P. D.		. Hub neter	L. T	. В.	Bolt Circle	Max. Bore	Weight ³
Tooth Face at Pitch Line 1.3 Hub Style C Shallow or Deep Dished Shallow Dished (SD)	36	35.28	8.0	SD	7.3	31	30	5.44	88
1.5', 1.75', 2' Deep Dished (DD) 6.25', 6.5'	36	35.28	10.	10.0DD		30 30		4.94	100
							Bore Capacit	ties	
1250 All Polymeric	Number of	P. D.		Hub ³		W/O Key		th Key ^①	Weight [®]
Pitch 2,500	Teeth		0. D.	L. T	. B.	Max.	Min.	Max.	Ŭ
ooth Face at Pitch Line .63	11	8.87	4.75		25	375	1.50	3.00	3.5
⊣ub Style B Vandrel Bore .94	12	9.66	4.75		25	375	1.50	3.00	4.1
		9.66 11.24	4.75 4.75		25 25	500	1.50	275	4.1 4.5
	1/1	11.74	4.70	2	20		1.75	273	4.0
	14			_ Hub [®]		Bore Capacities			
Pitch 3.268	Number of			Hub ³		W/O Kev			Wei aht3
Pitch 3.268 Tooth Face at Pitch Line .81		P. D.		_	R	W/O Key Max	Wit	th Key [®]	Weight [®]
Pitch 3.268 Tooth Face at Pitch Line .81 Hub Style C	Number of Teeth	P. D.	0. D.	L. T		Max.	Wit Min.	th Key [®] Max.	
Pitch 3.268 Tooth Face at Pitch Line .81 Hub Style C	Number of			L. T	. B.		With Min. 1.50	th Key® Max. 3.00	Weight®
Pitch 3.268 Tooth Face at Pitch Line .81 Hub Style C Mandrel Bore .94 N9350 Polymeric Sprocket	Number of Teeth 10	P. D. 10.58	0. D. 4.75	L. T		Max. 375	Win Min. 1.50 Bore Capacit	th Key© Max. 3.00 ties	5.7
Pitch 3.268 Tooth Face at Pitch Line .81 Hub Style C Mandrel Bore .94 N9350 Polymeric Sprocket Pitch 3.50	Number of Teeth 10 Number of	P. D.	0. D. 4.75	L. T 3.		Max.	Win Min. 1.50 Bore Capacit	th Key® Max. 3.00	
N325 Polymeric Sprocket Ptch 3.268 Tooth Face at Ptch Line .81 Hub Style C Mandrel Bore .94 N9350 Polymeric Sprocket Ptch 3.50 Tooth Face at Ptch Line .81 Hub Style C	Number of Teeth 10	P. D. 10.58	0. D. 4.75	L. T 3.	00	Max. 375	Win Min. 1.50 Bore Capacit	th Key© Max. 3.00 ties	5.7

⁰ Based upon keyed driver sprocket used with polymeric chain at the maximum rated working load. Consult Rexnord for information on steel hub inserts.
 ⁽⁹⁾ Contact factory for hub sizes and weights.
 ⁽⁹⁾ Data without steel hub inserts.
 ⁽⁹⁾ IMPORTANT: Polymeric sprockets with steel hub inserts are recommended for applications using metal chains.

DOUBLE-FLANGED POLYMERIC IDLERS


Corrosion resistant Polymeric Double-Flanged Idlers are designed for use with polymeric chains to insure longer system life and quieter operation. The six inch (DF6) and eight inch (DF8) diameter double-flanged idler wheels are manufactured from high-strength, wear-resistant polymeric material with a bronze bushing assembled into each idler. Some of the chains used on these wheels: NH45, NH77, NH78*, NHT78*, N250, N250WS, N325, N348, N9350, N9350WS. DF8 – NH45, NH77, NH78, NHT78, WH78, NH82, WH82, WH260, WH784, WHT78, WHT130, WHT138.


Features

98

- Made from polymeric and bronze materials that will not rust.
- Bronze bushed so that it can be used on nonrotating shafts as tail wheels, return support rollers, or drive take-up idlers.
- Double tapered flanges to effectively guide the chain into the center of the idler without unnecessary noise and chain wear.
- Engineered polymer reduces noise.
- Simple design means the idler is shaft ready and no machining is required.
- Designed so that two set collars will easily hold the idler in place.
- * Must machine "D" Dimension to 3 inches.

 $\ensuremath{\text{NOTE:}}$ For chains with extended rivets, single-flanged Polymeric idlers are available upon request

Dimensions are in inches. Weights are in pounds.

		Diameter		Length Thru		Midth			
Double Flanged Idler Wheels	Inside	Outside	Hub	Bore	Inside	Outside	Max. Bore	Wei ght [®]	
	Α	В	C	(L. T. B.)	D	E			
6 D.F. Wheel	6	7.25	3.25	2.50	269	3.50	1.44	28	
8 D.F. Wheel	8	9.50	4.25	3.00	363	4.50	2.44	4.5	

① Approx. – Not Bushed Wheels are normally stocked.

BUCKETS **ELEVATOR BUCKETS**

Rexnord combined three styles of elevator buckets into one series designated "Mill Duty". The section thickness of the cast bucket has been increased to accommodate those applications requiring old style AA-RB buckets. Rex® CAST and POLYMERIC buckets are available in two configurations, Mill Duty and AC Style.

Rex buckets were designed with over sixty years of experience in the design and manufacturing of bucket elevators. Rex buckets are designed to fill, carry and discharge material efficiently without trouble.

POLYMERIC BUCKETS

The Rex light-weight, corrosion resistant, non-metallic bucket was designed, developed and tested to meet industry's demands. There are numerous advantages and benefits in the use of these buckets; some are noted here:

- 1. Increases Belt (Chain) Life by double or better. The polymeric weighs one-fourth as much as a cast bucket, significantly reducing belt (chain) tension. For example, an 80-foot high elevator uses about 110-16 x 8 buckets weighing a total of 2,722 pounds. The use of polymeric buckets reduces this dead weight to 650 pounds, resulting in greater belt (chain) life.
- 2. Excellent Wear Resistance. After many years on the market and tens of thousands of buckets sold, the Rex polymeric bucket has proven itself highly wear resistant. Also, the heavy front lip will help give the longest possible wear life.
- Corrosion Resistant. It won't "rust away" your 3. profits. Rex polymeric buckets are produced from a very stable material that will not break down under most operating conditions and materials.
- 4. Good Discharge. A clean, smooth, low friction surface allows bulk materials to discharge efficiently - less backlegging, more capacity, less recycled material, less elevator boot flooding.

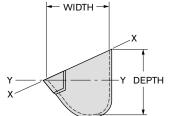
Guide to Selection Scale: 1 - Excellent; 2 - Very Go	od; 3 - Good								
Property Bucket Material									
Fioperty	Cast	Polymeric	Fabricated						
Strength	1	3	2						
Weight	3	1	2						
Corrosion Resistance	2	1	3						
Clean Discharge	3	1	2						
Abrasion Resistance	1	3	2						
Cost	2	3	1						

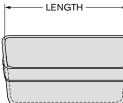
- 5. Strength has been designed into the bucket at strategic locations for the best impact resistance, resulting in fewer broken buckets. Yet, if there is a major obstruction in the elevator, the bucket will give way, rather than destroying the belt or chain.
- 6. Food Service Buckets are available and made from material approved by the USDA and FDA for direct contact with meat and food products prepared under federal inspection. Food service buckets are colored white.
- 7. Temperature Range from -40° to $+250^{\circ}$ F allows this bucket to be used in most applications.
- 8. Designed by elevator manufacturer for elevator user. This bucket was designed by Rexnord - the bucket manufacturer with over half a century of bucket elevator experience. The bucket is designed to fill, carry and discharge material efficiently without trouble.
- 9. Applications: Foundry sand, limestone, barite ore, granulated triple phosphate, glass cullet, soda ash, clay bauxite ore, potash, fertilizer, sand, gravel and cement products are only a few of the hundreds of applications in which Rex polymeric buckets are currently being used.
- 10. Dimensionally Interchangeable with cast buckets so that the polymeric bucket will fit into the attachment hole punching presently used.
- 11. Samples: Request samples of this economical, durable bucket for your elevator - it will prove itself in all respects.

CAUTION POLYMERIC BUCKETS

Because of an inherent ability to retain a static charge, an electrical spark may be produced by this bucket. Therefore, it should not be used in a combustible environment.

BUCKETS **ELEVATOR BUCKETS**


Cast - Mill Duty



Polymeric - Mill Duty

Cast - AC Style

NOTE: AC style buckets include vent holes to allow air to escape (cast and polymeric).

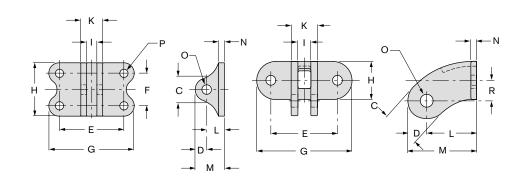
Polymeric - AC Style

						Dimensions a	re in inches. Weig	hts are in pounds.
Longth	Width	Donth	Back Th	ickness	Capacity	- Cu. Ft.	We	ight
Length	Vvidui	Depth	Cast	Polymeric	(X-X)	(Y-Y)	Cast	Pol ymeri c ^①
				MILL DUTY				
4	2.75	3.00	.10	-	.011	.007	1.3	-
5	3.50	3.75	.20	-	.020	.013	3.2	-
6	4.00	4.25	.20	.28	.029	.021	4.0	.6
7	4.50	5.00	.20	-	.050	.030	5.5	-
8	5.00	5.50	.20	.28	.07	.044	7.1	1.2
10	6.00	6.25	.20	.38	.12	.081	10	1.8
12	6.00	6.25	.30	-	.14	.087	20	-
12	7.00	7.25	.30	.41	.19	.12	17	2.4
14	7.00	7.25	.30	.41	.23	.14	18	2.8
14	8.00	8.50	.32	-	.30	.16	24	-
16	7.00	7.25	.32	-	.27	.16	28	-
16	8.00	8.50	.32	.41	.34	.21	30	4.2
18	8.00	8.50	.32	.41	.39	.23	39	5.1
18	10.00	10.50	.36	.50	.53	.40	43	6.7
20	8.00	8.50	.32	-	.42	.28	48	-
24	8.00	8.50	.38	-	-	-	-	-
				AC STYLE				
12	8.00	8.50	.38	.59	.28	.21	25	4.6
16	8.00	8.50	.38	.59	.38	.28	35	7.0
18	10.00	10.50	.44	.50	.62	.49	58	10.5
24	10.00	10.50	.44	.50	.85	.68	78	13.8

^① Mill Duty polymeric buckets are made out of impact – modified nylon. AC style polymeric buckets are made out of polyurethane.

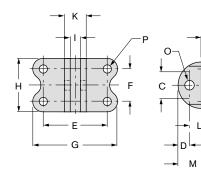
For FABRICATED STEEL BUCKETS please contact Rexnord's

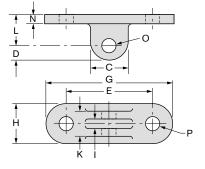
Conveying Equipment Division.

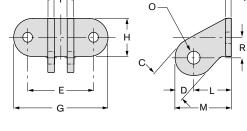

CAUTION POLYMERIC BUCKETS

Because of an inherent ability to retain a static charge, an electrical spark may be produced by this bucket. Therefore, it should not be used in a combustible environment.

BUCKETS


BUCKET AND FLIGHT WINGS


These wings are usually used with an "A" attachment.

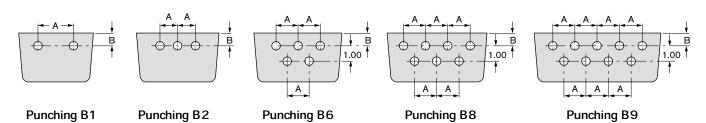


REX Style "A" Bucket Wing

REX Style "C" & "F" Flight Wing

LINK-BELT Style "A" **Bucket Wing**

LINK-BELT Style "C" & "F" Flight Wing


											Dime	nsions a	re in ind	nes. Weig	phts are in	n pounds.
Rex Wing No.	Link-Belt Wing No.	с	D	E	F	G	н	I	к	L	м	N	00	P@	R	Wt. with Rivet
5A		1.13	.50	2.75	1.38	3.63	2.25	.44	.94	.75	1.25	.25	.38	.31	-	.6
1C		1.75	.81	3.50	-	5.00	2.00	.56	1.31	1.56	2.38	.31	.63	.50	1.00	1.6
2C		2.00	1.00	3.50	-	5.00	2.00	.66	1.38	2.63	3.63	.31	.63	.50	1.06	2.1
5C		1.69	.84	2.75	-	4.75	2.00	.56	1.31	1.38	2.22	.31	.63	.50	.81	1.3
15C		1.31	.50	2.50	-	3.50	1.75	.44	1.00	1.13	1.63	.28	.38	.31	.81	.7
4F		-	.63	3.50	-	6.00	2.00	-	1.06 ³	2.50	3.13	.31	.63	.50	1.00	2.3
	4A	4.38	.69	4.00	3.26	5.50	4.76	.63	1.38	1.31	2.00	.31	.66	.56	.81	2.8
	5A	1.25	.59	2.75	1.38	3.63	2.48	.44	.94	.75	1.34	.25	.39	.33	-	.6
	6A	2.00	.69	3.38	1.26	4.88	2.38	.63	1.38	1.31	2.00	.31	.66	.41	-	1.3
	30A	3.38	.88	4.00	3.50	5.50	5.00	1.09	2.25	1.44	2.32	.38	.91	.56	-	4.4
	37A	1.00	.38	2.50	1.12	3.32	1.94	.28	.88	.69	1.07	.22	.41	.34	-	.5
	39A	1.25	.59	2.13	1.38	3.01	2.48	.44	.94	.75	1.34	.25	.39	.33	-	.6
	1B	1.88	.75	3.76	-	5.26	2.00	.56	1.31	1.31	-	.31	.66	.56	-	1.3
	2B	-	.41	1.76	-	2.52	.75	.28	.66	.69	-	.19	.41	.28	-	.2
	1C	1.56	.69	3.50	-	5.00	2.00	.56	1.31	1.56	2.56	.31	.63	.56	1.00	1.6
	2C	2.00	1.00	3.50	-	5.00	2.00	.63	1.38	2.63	3.63	.31	.63	.56	1.00	2.1
	2C+	2.00	1.06	3.50	-	5.00	2.00	.63	1.38	3.06	4.12	.75	.66	.53	1.00	3.2
	5C	-	.84	2.75	-	4.75	2.00	.56	1.31	1.38	2.22	.31	.66	.56	-	1.3
	10C	.88	.44	2.13	-	3.01	.88	.28	.66	.63	1.07	.19	.34	.34	.63	.3
	11C	1.44	.72	3.25	-	4.25	1.50	.56	1.19	1.13	1.85	.25	.66	.38	.75	.8
	15C	1.00	.58	2.50	-	3.50	1.76	.44	1.00	1.13	1.71	.28	.41	.34	.81	.7
	4F	1.75	-	3.50	-	6.00	2.00	-	1.06 3	2.50	3.13	.31	.66	.53	1.00	2.3
	5F	3.50	.94	3.50	-	5.50	5.00	-	1.31 3	1.44	2.38	.38	.91	.56	-	5.0

^① Swivel-rivet diameters.

⁽²⁾ Bucket-or-flight-bolt diameters.
⁽³⁾ This wing has solid lug – no clevis.

N

BUCKETS PUNCHING FOR USE WITH BELTS

The bucket punching dimensions shown are Manufacturers' Standard for mill duty style and continuous style buckets.

Belt width should exceed bucket length by one inch for buckets up to 16 inches, and by two inches for buckets 16 inches or over.

Bolt diameters for all buckets are ¹/4 inch for buckets up to 10 inches, ⁵/16 inch for buckets 10 inches or over.

Minimum length of bolts, of attaching buckets to belts, is determined as follows: Add (1) thickness of belt body (all ¹/₆ inch per ply), (2) total thickness of rubber covers, (3) thickness of rubber washer (allow ¹/₄ inch), (4) thickness of bucket back, and (5) thickness of nut (assumed equal to bolt diameter).

A rubber washer is used one each bolt, between bucket and belt, to act as a cushion when bucket passes around the pulleys, and to provide open spaces which prevent fine material from accumulating or packing between bucket and belt. Tight-fitting bolts prevent moisture from working into belt.

Dimensions	are in	inches.
------------	--------	---------

Bucket Length	A	B	Bucket Length	A	B	Bucket Length	Α	B①	Bucket Length	A	B①	Bucket Length	A	B①
Pl	UNCHING B	81	Pl	UNCHING B	32	P	UNCHING I	36	Pl	UNCHING I	38	Р	UNCHING	B9
4	2 ⁵ /16	3/4	7	2 ¹ / ₂	1	8	3	7/8	14	4	7/8	20	4	7/8
5	3 ³ /16	1	8	3	1	9	3	7/8	16	41/2	7/8	22	4 ¹ / ₂	7/8
6	4 ³ /8	1				10	3 ¹ / ₂	7/8	18	5	7/8	24	5	7/8
						11	4	⁷ /8						
						12	4 ¹ /2	⁷ /8	1.00	1.13	1.63	.28	.38	.31

¹ For continuous style buckets, centerline for single row of holes, or centerline between double row, will be at mid-depth of bucket.

SELECTION OF CHAINS

The following sections of this catalog are devoted to presenting comprehensive selection procedures for drive, conveyor, and elevator chains. The information included provides economical selections, yet assures the correct choice of components which can withstand the rigors of the application. Because there is an almost unlimited variety of component applications, these selections are meant only to serve as a guide when designing new systems. On existing installations, the selection guides will prove helpful in determining whether a component in use is the most economical choice. They will also serve to guide the upgrading of present installations where service life is not satisfactory.

Rexnord Selection Services

Rexnord application engineers are available to assist in the selection of chains and components. Gather all pertinent technical information regarding the application, and call us at (414) 643-3000 or fax us at (414) 643-2609.

Chain Ratings

As a result of extensive testing and field experience, load ratings have been established for drive chains based on wear durability and fatigue strength to provide 15,000 hours chain life under the ideal conditions of clean environment, proper installation, maintenance, and lubrication. Drive chains are selected in the tables by horsepower and speed.

All other types of metal chains should be selected based on working load and chain speed limitations, with due regard for experience in similar application environments. A chain's working load is the maximum load (chain pull) a chain can withstand without a shortened life due to accelerated wear or breakage. Polymeric (non-metallic) chains have unique selection considerations which are covered in the Polymeric section of this catalog.

Rex® and Link-Belt® chains are also rated according to the Standards and Policies and Procedure Recordings of the American Chain Association. Most notably, we publish a minimum ultimate tensile strength (MUTS). This represents the minimum force at which an unused, undamaged chain could fail when subjected to a single tensile loading test.

It should be noted that chains should not be selected based on ultimate strength ratings. Design considerations chosen to maximize ultimate strengths frequently are not consistent with obtaining the best possible resistance to the modes of failure that most often limit a chain's life (e.g. low-cycle fatigue, corrosion induced embrittlement, etc.). Chains that sacrifice some degree of tensile strength to obtain greater ductility, toughness, and resistance to embrittling conditions are far better suited to most application environments.

DRIVE CHAIN SELECTION

Rex and Link-Belt drive chains of all steel construction are ruggedly built, dependable chains for service in the slow to moderate speed ranges and heavy loads. Since they operate over cast sprockets with hardened teeth or fabricated steel sprockets, and are long in pitch compared to ANSI roller chain, they are a more economical choice than other chains.

Under exposed conditions, or where dust and dirt are present, the designed, built-in clearance between the working parts of our drive chains make them very suitable for service. Conveyor and elevator drives are ideal for Rex and Link-Belt drive chains since they withstand heavy shock loads and exposed operating conditions.

Rexnord's 3100 Series of steel chain is designed to have advantages and features of our other steel chains and to be a replacement for ANSI roller chains.

Rex and Link-Belt drive chains are not designed for attachments. See pages 10 to 29 for chains with attachments. GENERAL DESIGN CONSIDERATIONS

Basis for Selection

Selections are based on laboratory tested and field proven horsepower capacity and speed data rather than "working loads." The horsepower capacity ratings have been developed on the basis of fatigue strength and wear capacity of the chain components. Under ideal conditions of clean environment, proper installation, maintenance, and lubrication, the selections listed are intended to provide 15,000 hours chain life for 100 pitch strands.

More economical chain selections are available. For applications where a a chain life of less than 15,000 hours is acceptable, contact your Rexnord representative.

Economy

When selecting a chain drive, consider all elements, but use only those that are required for the safe and successful operation of the drive application.

In evaluating the economy of a chain-sprocket drive system, consider the overall cost of the chain and sprockets in the system and not merely the cost per foot of chain.

Chain

The best chain and sprocket combination is selected in the 12-tooth column. Occasionally, the same chain will appear under the three sprocket selections; that is 9T, 12T, and 15T. This same chain is the most **economical** choice of all the other chains that were considered.

Selection for 9-tooth sprockets are limited, in some cases, by commercial steel shafting. Where alloy shafting is required, see Rexnord for recommendations.

SPROCKETS

Rex[®] sprockets are designed with full attention to the requirements for proper chain-sprocket interaction. For each size and type of sprocket, Rexnord Engineers have selected the proper tooth pressure angle, pitch-line-clearance, bottom diameter and tooth pocket radius for maximum service.

Fabricated steel sprockets are recommended as the preferred choice for all chain drives. Cast sprockets with hardened teeth are also available for use on slower drives.

Largest Keyseated Bore

The "largest keyseated bore" shown in the drive chain selection tables (pages 110-118), indicates the largest shaft that may be used with the sprocket hub selected. Sprocket hubs will deliver the HP and RPM used for the selection but are not designed for the torque that could be delivered by the largest keyseated shaft shown in the table.

If a larger bore than shown is required, select a larger sprocket. The largest bore is selected from the hub size table for the material shown, either Cast Sprockets with hardened teeth or Fabricated Steel, and defines the largest hub diameter which will fit without interfering with the chain.

Chain Slack

For best operating service, allow a sag in the slack strand equal to 3% of sprocket centers.

DRIVE ARRANGEMENTS

Relative position of sprockets in drives should receive careful consideration. Satisfactory operation can be secured with the centerline of the drive at any angle to the horizontal, if proper consideration is given. Certain arrangements require less attention and care than others are, therefore, less apt to cause trouble. Various arrangements are illustrated in the diagrams. The direction of rotation of the drive sprocket is indicated.

Best Arrangements

Arrangements considered good practice are illustrated in Figs. 1, 2, 3, and 4. The direction of rotation of the drive sprockets in Figs. 1 and 4 can be reversed.

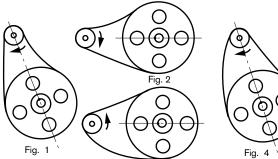
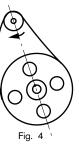
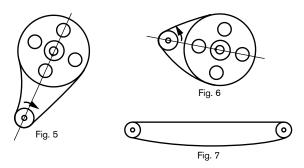
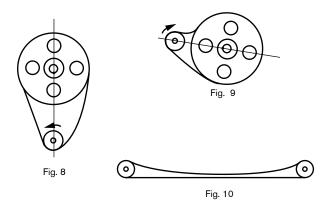




Fig. 3

Other Acceptable Arrangements

If none of the above arrangements can be followed, an attempt should be made to use an arrangement as illustrated in Figs. 5, 6, and 7.


When the large sprocket is directly above the small sprocket, Fig. 8, a drive cannot operate with much chain slack. As the chain wears, shaft-center distance must be adjusted or an idler be placed against the outside of the slack strand (near the small sprocket) to adjust slack and keep the chain in proper contact with the small sprocket.

With the drive slightly inclined, Fig. 5, less care will be required, because the weight of the slack chain strand helps to maintain better contact between the chain and the sprockets.

Where center distances are short, or drives nearly horizontal, the slack should be in the bottom strand, especially where take-up adjustment is limited, Fig. 6 rather than Fig. 9. An accumulation of slack in the top strand may allow the chain to be pinched between the sprockets, Fig. 9.

When small sprockets are used on horizontal drives, it is better to have the slack strand on the bottom, Fig. 7, rather than on the top, Fig. 10. Otherwise, with the appreciable amount of slack, the strands may strike each other.

Least Recommended Arrangements

DESIGN AND SELECT

DRIVE CHAIN SELECTION

Selecting a Chain Using Selection Tables

- Step 1. Determine Horsepower... Motor or actual.
- Step 2Select Service Factor (SF)...See Table 1, pages 108-109.
- Step 3 Calculate Design Horsepower (DHP). DHP = SF x HP.
- Step 4. Determine Speed... DriveR Shaft RPM.
- Step 5 Select the chains in the 12T. column from Table 2, pages 110-118. *Example 20 HP; 70 RPM; 1.25 SF: (DHP = HP)*

RPM			2	25 DHP				
Driver	Drive	er Sproc	:ket - No.	of Teet	th – Hub	Size Le	tter	Type of
Sprocket	91	Г	12T		15T		Hub Letter	Lub
80-90	R1037	3 ³ /16	1030	5 ¹⁵ /16	R 3112	4 ¹⁵ /16		٣
00-30	K1037	3-710	3160	3 ³ /16	3160	47/16		A
70-80	R1037	$3^{3}/_{16}$	1030	5 ¹⁵ /16	R 51 4	5 ¹⁵ /16		
70-80	K1037	3-/16	3180	3 ¹¹ /16	3160	4 ⁷ /16		
60-70	R1037	315/16	R1033	5 ¹⁵ /16	1030	7	1	NGeeeell
00-70	K1037	3110	3180	3 ¹¹ /16	3160	4 ⁷ /16	, ,	

Note: If the RPM appears in two rows in the RPM column of the Selection Table (i.e. 70 RPM appears in 60-70 and 70-80 RPM rows) use the faster speed range for greatest economy. Also, see S tep 6 for alternate selection.

12-Tooth Sprocket Selection Advantages

- 1. Most economical "Power Package" of chain and sprockets.
- 2 Quiet operation.
- 3 Increased wear life approximately 70% greater chain wear life than a 9-tooth selection.
- 4. Best for space available and system economy.
- 5. Offers large speed ratio possibilities.
- Step 6Choose the proper drive...When an alternative
is listed for a given selection (i.e. 3100 Series
Chain is listed) choose the better drive based
on the following considerations
 - a. Cost Evaluate the total cost of each drive package: chain and sprockets
 - **b. Space Limitations** The smaller pitch chain (usually 3100 Series) should provide the drive requirements in less space.
 - **c.** Availability If delivery is crucial, consult Rexnord to see which of the two chains is more readily available.
 - d. ANSI Replacement The 3100 Series Chains replace corresponding ANSI roller chains up to 350 RPM. This series chain operates over the same sprockets
 - e. Shaft Size The larger pitch chain of the

two will probably have to be used when the driver shaft size exceeds the maximum bore listed for the smaller chain.

- **f.** Noise Smaller pitch chain operating over cut tooth sprockets will provide quieter and smoother operation.
- **Step 7.** For alternates to the 12-Tooth Sprocket Selection, see the 9- or 15-Tooth Sprocket Selections

Check:

Space - Will sprocket and chain fit in the allowable space? For pitch diameter, see table on page 139.

Generally minimum space required for chain and sprocket = $1.2 \times \text{Pitch Diameter.}$

Availability - Is DriveN sprocket available for required speed ratio?

Select a 9T Sprocket where greater speed ratios and minimum space are required. The majority of 9-tooth selections will result in a space advantage.

9-Tooth Sprocket Selection								
Advantages	Limitations							
1. G reater Speed Ratios	 G enerally higher cost G reater noise Maximum wear Less smooth running, more pulsations. (See C hordal Action Table on 							
G enerally, require less space that the 12T sprocket selection	next page.)							

Select a 15T Sprocket where long centers are necessary and space is not a limiting factor...

where maximum **speed ratios** are not required... or where **quiet operation** is desired.

15-Tooth Spro	cket Selection
Advantages	Limitations
\odot \odot	1. More space required.
 Most economical for long centers. 	2. Fewer speed ratio possibilities.
2 Least wear - approximately 150% greater chain wear life than the 9T. selection.	3. More costly than minimum center distances.
3 Least noise.	 More chain required in the system.

Step 8. Determine number of teeth on the DriveN sprocket, minimum center distance and chain length.

a. Multiply number of teeth on DriveR by desired speed ratio (Step 7) to determine number of teeth on DriveN sprocket.b. Refer to pages 140-141 for minimum center distance and chain length calculations.

Step 9. Select DriveR and DriveN Sprocket Hubs and Material.

a. DriveR Sprocket and Hub

The sprocket hub size letter in the selection table identifies the minimum "Torque Rated" hub that will transmit the desired horsepower. Refer to the example shown in Step 5 on page 105. For this example, the hub is specified as letter I. The table on page 81 recommends a hub size of 4.5" by 2.0" (for a solid sprocket). The table also identifies the torque being transmitted, in this case up to 23,000 in-lbs. The hub size and bore diameter listed are recommended based on the limitations of the typical **shaft** material having a maximum torsion shear stress of 6,000 psi. If the shaft has already been determined, use the bore size column to select the appropriate hub dimensions.

Note: Fabricated steel sprockets with induction hardened teeth are the recommended first choice for drive applications but, if a cast sprocket is desired, be sure to check availability of the cast pattern as listed beginning on page 83. If the sprocket unit number is not listed, a pattern is not available. The table gives stocked hub dimensions. **Cast to order** sprocket hubs would be sized per page 81.

b. DriveN Sprocket and Hub

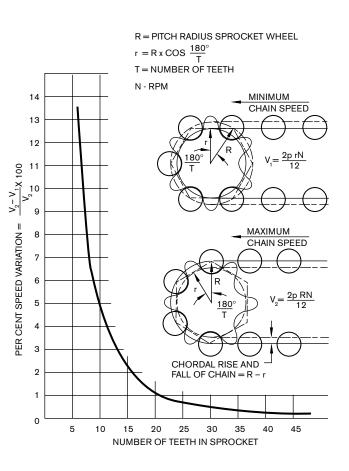
The proper DriveN sprocket hub can be determined from the following:

Driven Hub Torque = Speed Ratio x Driver Hub Torque

The speed ratio and driver torque were determined in Step 8b and Step 9a. The DriveN sprocket hub is selected based on the driven hub torque and using the tables on page 81.

Referring to the example above, the driver hub was size I and the torque transmitted was 23,000 in-lbs. If the speed ratio were 2 to 1, we would be transmitting 46,000 in.-lbs. and would require a size L hub, (5.25 by 3) or larger.

c. Largest Keyseated Bore


The "Largest Keyseated Bore" next to each chain selection indicates the largest shaft that can be used with the sprocket, sprocket material, and hub size letter selected.

- **Step 10.** Use the recommended lubrication method as shown in Table 2, pages 110-118. For the recommended lubricant, see page 135.
 - **Note:** For example of selection, see page 107.

Chordal Action

The rise and fall of each pitch of chain as it engages a sprocket is termed "chordal action" and causes repeated chain speed variations (pulsations). As illustrated by the chart below, chordal action and speed variation decreases as the number of teeth in the small sprocket is increased, and becomes negligible when 21 or more teeth are used. For example, the variation between minimum and maximum chain speed due to chordal action is 13% for a 6-tooth sprocket, 4% for an 11-tooth sprocket, and 1% for a 21-tooth sprocket. Where smooth operation is essential, use as many teeth as possible in the small sprocket.

Variation in Chain Speed Due to Chordal Action

DRIVE CHAIN SELECTION

Selecting a Chain Using Selection Tables

Drive Chain Selection Example

A single roll rock crusher is to be operated at 44 RPM driven by a 50 HP engine. The speed reducer has an output shaft of 3.94", operating at 90 RPM. The crusher shaft is 5.94". The crusher will operate 8 hours per day. DriveR sprocket space restriction is 16".

Step 1. Horsepower

Motor or actual: 50 HP

Step 2. Service Factor

Type of Application: Crusher Service Factor: (See Table 1 and "Converted Service Factor" chart on page 108.) 10 HR, Motor drive = 1.75 SF 10 HR, Engine driven = 2.0 SF

Step 3. Design Horsepower DHP = 50 HP x 2.0 SF = 100 DHP

Step 4. Speed and Shaft Size

Speed and diameter of DriveR shaft: 90 RPM; 3.94" Speed and diameter of DriveN shaft: 44 RPM; 6.94"

Step 5. Drive Chain and Driver Sprocket

A chain is selected for a 12-tooth DriveR sprocket at 100 DHP, 90 RPM (see Table 2 for selection).

RX238 Chain; 12-tooth DriveR Sprocket

Step 6. Choice of Drives

A choice must be made between two drives when both appear. However, at this rating, there is only one chain available – RX238.

Step 7. Space and Speed Ratio

Check space available for DriveR sprocket: Using the pitch diameter table on page 140 –

- a.A 12-tooth sprocket has a pitch diameter equivalent to 3.8637 pitches. The diameter in inches would be 3.8637 x the pitch (3.5" for RX238) = 13.52".
- b.The minimum space required = 1.2 x 13.52" = 16.23" which is larger than the space available. Repeat steps 5 and 6 using the 9-tooth column in the selection tables.

c. For a 9-tooth sprocket R0635 would be selected. The minimum space would be 1.2 x 13.16" = 15.79" which meets the space restriction.

Determine Speed Ratio:

Ratio = $\frac{\text{DriveR Shaft RPM}}{\text{DriveN Shaft RPM}} = \frac{90 \text{ RPM}}{44 \text{ RPM}} = 2.05 \text{ to } 1$

Step 8. Drive Sprocket and Center Distance and Change Length

The nearest ratio to 2.05 to 1 is 2.00, with an 18-tooth DriveN sprocket. The minimum center distance is 2.06 feet and 9.38 feet of chain is required.

Determine the minimum center distance per the formula on page 140:

Min. CDp (18+9)/6 + 1 = 5.5 pitches $\frac{18+9+1}{6} = 55$

Min. CD" $\frac{5.5 \ge 4.5"}{12} = 2.06$ feet

Determine the approximate chain length per the formula on page 141:

LP = 2(5.5) + (18 + 9)/2 + (0.0258 x (18-9)²/5.5) = 24.9 pitches 25 pitches is the minimum (rounded up) L" = $\frac{25 x 4.5}{12}$ = 9.38 feet

Step 9. Drive and Drive Sprocket Material and Hub Selection

For the selection table used in Step 7, the required hub letter is N. Per the table on page 79 an N style hub is rated for 70,000 inch pounds and has a diameter of 6" and a length of 3". The plate thickness is 1.75". The total length through bore is 4.75" (3" + 1.75"). Since the sprocket is to be mounted on a reducer, it is recommended that the hub style is offset hubs, one side flush. This would need to be specified as such on the order.

The drive hub will need to handle 140,000 inch pounds since the speed ratio is 2 to 1. Per the table on page 79 a size P hub is required. This hub would be 8.75" in diameter and the length through bore would be 10.50".

Step 10.Lubrication

The type of lubrication for this drive selection, as shown in Selection Table 2, is oil bath.

Service Factors

Use the table to find the application or the closest similar application. Note whether the operating time will be up to 10 hours a day or from 10 hours to 24 hours a day. In the column to the right of the application, select the Service Factor. This Service Factor determines the Design Horsepower for use in the Chain Selection Table.

Occasional and Intermittent Service or Engine Driven Applications

The Service Factors listed in Table 1 are for electric motor drives and normal conditions. For multi-cylinder engine driven applications and all applications operating intermittently up to 3 hours per day, use the values shown in the Converted Service Factors table. First, find the Service Factor of the same application operating 10 hours per day in Table 1. Next, in the first column of the chart below, find this same service factor in bold face type. Then, to the right under the desired hours service and prime mover locate the Converted Service Factor. For example, in the segment of Table 1 showing service factors by application on page 109, the Service Factor for a uniformly loaded belt conveyor at 10 hours a day is 1.00. From the chart, for the same application, the following are the service factors for various conditions:

- 1. Engine driven 10 hours per day; use 1.25 Service Factor.
- 2. Engine driven 3 hours intermittently; use 1.00 Service Factor.
- 3. Motor driven 3 hours intermittently; use .80 Service Factor.

	Co	onverted Se	rvice Factors		
10 Hrs. F	Per Day	24 Hrs.	Per Day		nittent er Day ^①
Motor	Engine	Motor	Engine	Motor	Engine
1.00	1.25	1.25	1.50	.80	1.00
1.25	1.50	1.50	1.75	1.00	1.25
1.75	2.00	2.00	2.25	1.50	1.75

^① For applications operating less than 3 hours per day and applications driven by single cylinder engines, refer to Factory for other service factors.
 ^③ These service factors are based on the assumption that the system is free from

[®] These service factors are based on the assumption that the system is free from serious critical and torsional vibrations and that maximum momentary or starting loads do not exceed 200% of the normal load.

Note: For extremely wet or abrasive environments add 0.25 to the applicable service factor.

TABLE 1 SERVICE FACTORS LISTED BY INDUSTRY AGMA Recommendations... Factors are minimum and normal conditions are as

A suff suff su	Ser Fac		A set for the set	Ser Fa	vi ce ctor	A sulf suff su		vice ctor	Andreader		rvice ictor
Application	10 Hours	24 Hours	• Application	10 Hours	24 Hours	Application	10 Hours	24 Hours	Application	10 Hours	24 Hours
B rewing & D istilling			Lumber Industry			P aper Mills			RubberIndustry		
Bottling Machinery	1.00	1.25	Barkers-Hydraulic Mechanical	1.25	1.50	Agitators (Mixers)	1.25	1.50	Calender	1.25	1.50
Brew Kettles Continuous	1.00	1.25	Burner Conveyor	1.25	1.50	Barket Auxiliaries, Hydraulic	1.25	1.50	Mixer	-	2.00
Can Filling Machinery	1.00	1.25	Chain & Drag Saw	1.50	1.75	Barker Mechanical	1.25	1.50	Mill (2 or more)	-	1.50
Cookers Continuous	1.00	1.25	Chain & Craneway Transfer	1.50	1.75	Barking Drum	1.75	2.00	Sheeter	-	1.50
Mash Tub Continuous	1.00	1.25	Debarking Drum	1.75	2.00	Beater & Pulper	1.25	1.50	Tire Building Machine	1	1
Scale Hopper Frequent Start	1.25	1.50	Edger & Gang Feed	1.25	1.50	Bleacher	1.00	1.25	Tire & Tube Press Opener	1	1
Clay Working Industry			Green Chain	1.50	1.75	Calendars	1.25	1.50	Tubers & Strainers	-	1.50
Brick Press	1.75	2.00	Line Rolls, Log Deck, Log Haul			Calendars, Super	1.75	2.00	S ewage D isposal		
Briquette Machine	1.75	2.00	(Incline & Well Type)	1.75	2.00	Converting Machine (Except			Bar Screws	1.00	1.25
Clay Working Machinery	1.25	1.50	Log Turning Device	1.75	2.00	Cutters, Platters)	1.25	1.50	Chemical Feeders	1.00	1.25
Pug Mill	1.25	1.50	Main Log Čonveyor	1.75	2.00	Conveyor	1.00	1.25	Collectors	1.00	1.25
Distilling (See Brewing)			Off Bearing Rolls	1.75	2.00	Couch	1.25	1.50	Dewatering Screens	1.25	1.50
Dredges			Planer Feed & Floor Chains	1.25	2.50	Cutters, Platters	1.75	2.00	Grit Collectors	1.00	1.25
Cable Reels	1.25	1.50	Planer Tilting Hoist	1.50	1.50	Cylinder	1.25	1.50	Scum Breakers	1.25	1.50
Conveyors	1.25	1.50	Re-Saw Merry-Go-Round Conv	1.25	1.50	Dryer	1.25	1.50	Slow or Rapid Mixer	1.25	1.50
Cutter Head Drives	1.75	2.00	Roll Cases, Slab Conveyor	1.75	2.00	Felt Stretcher	1.25	1.50	Sludge Collectors	1.00	1.25
Jig Drives	1.75	2.00	Small Waste Conveyor - Belt	1.00	1.25	Felt Whipper	1.75	2.00	Thickeners	1.25	1.50
Maneuvering Winches	1.25	1.50	Small Waste Conveyor - Chain	1.25	1.50	Jordan	1.75	2.00	Vacuum Filters	1.25	1.50
Pumps	1.25	1.50	Sorting Table	1.25	1.50	Log Haul	1.75	2.00	Textile Industry		
Screen Drive	1.75	2.00	Tipple Hoist Conv. & Drive	1.25	1.50	Press	1.00	1.25	Batcher, Calendar	1.25	1.50
Stackers	1.25	1.50	Transfer Conveyor & Rolls	1.25	1.50	Pulp Machine	1.25	1.50	Card Machine	1.25	1.50
Utility Winches	1.25	1.50	Tray Drive, Trimmer Feed & Waste			Reel	1.25	1.50	Cloth Finishing Machine	1.25	1.50
Food Industry			Conveyor	1.25	1.50	Stock Chest	1.25	1.50	Dry Cans, Dryers	1.25	1.50
Beet Slicer	1.25	1.50	Oil Industry			Suction Roll	1.00	1.25	Dyeing Machinery	1.25	1.50
Bottling Machine, Can Filling	1.25	1.25	Chiller	1.25	1.50	Washer & Thickeners	1.25	1.50	Knitting Machine	1	1
Cooker	1.00	1.25	Oil Well Pumping	1	1	Winders	1.00	1.25	Loom, Mangle, Napper Pads	1.25	1.50
Dough Mixer, Meat Grinder	1.25	1.50	Paraffin Filter Pass	1.25	1.50				Range Drives	1	1
- ·			Rotary Kiln	1.25	1.50				Slashers, Soapers	1.25	1.50
			· ·						Spinners	1.25	1.50
									Tenter Frames, Washers	1.25	1.50
									Winders (Except Batchers)	1.25	1.50

^① Refer to Factory.

Table 1 extracted from AGMA Standard Application Classification for Gearmotors (AGMA 150.02) with the permission of the American Gear Manufacturers Association, One Thomas Circle, Washington 5, D.C.

DESIGN AND SELECTIOI

TABLE 1

SERVICE FACTORS LISTED BY INDUSTRY

AG MA Recommendations... Factors are minimum and normal conditions are assumed.

A		vice ctor	0		vi ce ctor	A		vice ctor	Amaliantina		rvice ctor
Application	10 Hours	24 Hours	Application	10 Hours	24 Hours	Application	10 Hours	24 Hours	Application	10 Hours	24 Hours
Agitators			or Fed: Apron, Assembly, Belt	1	1	Generator (Not Welding)	1.00	1.25	Proportioning	1.25	1.50
Paper Mills (Mixers) Pure Liguid (Blade or Prop.)	1.25	1.50	Bucket, Chain, Flight, Oven or	1.00	1.05	Welding	1.00	0	Single Acting, 3 or more Cyl	1.25	1.50
Liquids & Solids	1.00 1.25	1.25 1.50	Screw Conveyors – Heavy Duty, Not	1.00	1.25	G ravity D ischarge E levator G rit C ollector (Sewage)	1.00	1.25 1.25	Double Acting, 2 or more Cyl Rotary Gear, Lobe or Vane	1.25 1.00	1.50 1.25
Variable Density Liquids	1.25	1.50	Uniformly Fed: Apron			Hammer Mills	1.00	2.00	Punch Press – Gear Driven	1.00	2.00
Apron Conveyor	1.20	1.50	Assembly, Belt, Bucket, Chain,			Induced D raft F an	1.25	1.50	Reciprocating Compressor	1.75	2.00
Uniform	1.00	1.25	Flight, Oven or Screw	1.25	1.50	Jordans (Paper)	1.75	2.00	Single Cylinder	1.25	1.50
Heavy Duty	1.25	1.50	Conveyors – Severe Duty:	1.20	1.00	Kilns (Rotary)	1.25	1.50	Multi-Cylinder	1.75	2.00
Apron Feeder	1.25	1.50	Reciprocating, Shaker	1.75	2.00	Laundry Washers & Tumblers	1.25	1.50	Reciprocating	1.70	2.00
Assembly Conveyor			Conveyors Live Rolls	1	1	Line Shafts			Conveyor, Feeder	1.75	2.00
Uniform	1.00	1.25	Cookers (Brewing and Distilling)			Heavy Shock Load	1.75	2.00	Pump, 3 or more Cyl.	1.25	1.50
Heavy Duty	1.25	1.50	Food	1.00	1.25	Moderate Shock Load	1.25	1.50	Reel (Paper)	1.25	1.50
Ball Mills	-	1.50	Cooling Tower Fans			Uniform Load	1.00	1.25	Rod Mills	-	1.50
Barge Haul Puller	1.75	2.00	Forced Draft	1	1	Live Roll Conveyors	1	1	Rotary Pumps	1.00	1.25
Barking D rum	1.75	2.00	Induced Draft	1.25	1.50	Lobe Blowers or Compressors	1.25	1.50	Rotary S creen	1.25	1.50
Hydraulic Auxiliaries	1.2	1.50	Couch (Paper)	1.25	1.50	Log Haul (Paper)	1.75	2.00	Rubber Industry	2	2
Mechanical	1.25	1.50	Cranes & Hoists			Looms (Textile)	1.25	1.50	S cale H opper (Brewing)	1.25	1.50
B ar S creen (Sewage)	1.00	1.25	Heavy Duty	1.75	2.00	Lumber Industry	2	2	S creens	1.20	1.00
Batchers (Textile)	1.25	1.50	Cranes & Hoists - Medium	l, č	1	Machine Tools	1		Air Washing	1.00	1.25
Beater & Pulper (Paper)	1.25	1.50	Duty: Reversing, Skip, Travel	L	I	Auxiliary Drives	1.00	1.25	Dewatering	1.00	1.50
Belt Conveyor	1.20	1.00	or Trolley Motion	1.25	1.50	Bending Roll	1.00	1.50	Rotary Stone or Gravel	1.25	1.50
Uniform	1.00	1.25	Crushers – Ore or Stone	1.75	2.00	Main Drives	1.25	1.50	Traveling Water Intake	1.20	1.25
Heavy Duty	1.00	1.25	Cutters (Paper)	1.75	2.00	Notching Press (Belted)	1.25	1.50	S crew C onveyor	1.00	1.20
Belt Feeder	1.25	1.50	C vlinder (Paper)	1.75	1.50	Plate Planer	1.75	2.00	Uniform	1.00	1.25
Bending Roll (Mach.)	1.25	1.50	D ewatering S creen	1.20	1.50	Punch Press (Gear)	1.75	2.00	Heavy Duty or Feeder	1.00	1.20
Bleacher (Paper)	1.25	1.25	(Sewage)	1.25	1.50	Tapping Machines	1.75	2.00	S cum B reaker (Sewage)	1.25	1.50
Blowers	1.00	1.20		1.25	1.25	Mangle (Textile)	1.25	1.50	Service E levator H and Lift	1.25	-
	1.00	1.25	DiscFeeder	2	1.25		1.25	1.50		1.75	2
Centrifugal			Distilling	۲	٢	Man Lifts (Elevator)	-		S ewage D isposal	1.75	-
	1.25	1.50	Double Action Pump	1.05	1 50	Mash Tubs (Brewing) Meat G rinder (Food)	1.00	1.25	Shaker Conveyor		2.00
Vane	1.00	1.25	2 or more Cylinders	1.25 ①	1.50		1.25	1.50	Sheeter (Rubber)	-	1.50
Bottling Machinery	1.00	1.25	Single Cylinder		1	Metal Mills	1 05	1	Single Action Pump	1	1
B rewing	2	2	Dough Mixer (Food)	1.25	1.50	Draw Bench Carriage	1.25	1.50	1 or 2 Cylinder		-
Brick Press (Clay Working)	1.75	2.00	D raw B ench			Draw Bench Main Drive	1.25	1.50	3 or More	1.25	1.50
B riquette Machine			Carriage	1.25	1.50	Forming Machine	1.75	2.00	Single Cylinder Pump	1	1
(Clay Working)	1.75	2.00	Main Drive	1.25	1.50	Slitters	1.25	1.50	Skip Hoist	1.25	1.50
Bucket			D redges	2	2	Table Conveyors Non-Rev	1.25	1.50	Slab Pusher	1.25	1.50
Conveyor Uniform	1.00	1.25	D yeing Machine (Textile)	1.25	1.50	Wire Drawing of Flattening	1.25	1.50	Slitters	1.25	1.50
Conveyor Heavy Duty	1.25	1.50	Dryers (Paper)	1.25	1.50	Wire Winding	1.25	1.50	S ludge C ollector		
Elevator Continuous	1.00	1.25	D ryers & coolers			Mills Rotary			(Sewage)	1.00	1.25
Elevator Uniform Load	1.00	1.25	(Mills Rotary)	-	1.50	Ball	1.75	2.00	Soapers (Textile)	1.25	1.50
Elevator Heavy Duty	1.25	1.50	E levators			Cement Kilns	1	1	S pinners (Textile)	1.25	1.50
Calenders			Bucket Uniform Load	1.00	1.25	Coolers, Dryers, Kilns	1.25	1.50	S teering G ear	1.25	1.50
(Paper)	1.25	1.50	Bucket Heavy Load	1.25	1.50	Pebble, Rod, Tumbling Barrels	1.75	2.00	S tock C hest (Paper)	1.25	1.50
Super (Paper)	1.75	2.00	Bucket Continuous	1.00	1.25	Mine Fan	1.25	1.50	S tokers	1.00	1.25
(Rubber) (Textile)	1.25	1.50	Centrifugal Discharge	1.00	1.25	Mixers			S tone C rushers	1.75	2.00
Cane Knives	-	1.50	Escalators	1.00	1.25	Concrete (Cont)	1.25	1.50	Suction Roll (Paper)	1.00	1.25
Can Filling Machines	1.00	1.25	Freight	1.25	1.50	Concrete (Inter)	1.25	1.50	Table Conveyor		
Card Machine (Textile)	1.25	1.50	Gravity Discharge	1.00	1.25	Constant Density	1.00	1.25	Non-Reversing	1.25	1.50
C ar D umpers	1.75	2.00	Man Lift, Passenger	1	1	Variable Density	1.25	1.50	Tapping Machines	-	2.00
C ar Pullers	1.25	1.50	Service Hand Lift	1.75	-	Rubber	-	2.00	Tenter Frames		
CementKilns	1	1	E scalators	1.00	1.25	Sewage	1.25	1.50	(Textile)	1.25	1.50
Centrifugal	1	L	Fans	L	I	Nappers (Textile)	1.25	1.50	Textile Industry	2	2
Blowers, Compressors,	1	I I	Centrifugal	1.00	1.25	Notching Press	1	l	Thickeners (Sewage)	1.25	1.50
Discharge Elevators, Fans	1	I I	Cooling Tower Induced Dr	1.25	1.50	Belt Driven	1.00	1.25	Tire Building Machine	1	1
or Pumps	1.00		Cooling Tower – Forced Dr	1	1	0 il Industry	2	2	Tire & Tube Press Opener	1	1
Chain 🖒 onveyor			Induced Draft	1.25		0 re C rusher	1.75	2.00	Travel Motion (Crane)	1.25	1.50
Uniform	1.00	1.25	Large Industrial	1.25	1.50	0 ven C onveyor – U niform	1.00	1.25	Trolley Motion (Crane)	1.25	1.50
Heavy Duty	1.25		Large (Mine, etc.)	1.25	1.50	Heavy	1.25	1.50	Tumbling B arrels	1.75	2.00
Chemical Feeder (Sewage)	1.00	1.25	Light (Small Diameter)	1.00	1.25	Paper Mill	2	2	Vacuum Filters		
Clarifiers	1.00	1.25	Feeders	L	I	Passenger E levator	1	1	(Sewage)	1.25	1.50
Classifiers	1.25	1.50	Apron or Belt	1.25	1.50	Pebble Mills	-	1.50	Vane Blower	1.00	1.25
Clay Working	2	2	Disc	1.00	1.25	Planer (Reversing)	1.75	2.00	Washers and Thickeners		
Collectors (Sewage)	1.00	1.25	Reciprocating	1.75	2.00	Presses (Paper)	1.00	1.25	(Paper)	1.25	1.50
Compressors	1	1	Screw	1.25	1.50	(Printing)	1.00	1.25	Winches, Maneuvering		1
Centrifugal	1.00	1.25	Felt	1	1	Propeller Type A gitator	1		(Dredge)	1.25	1.50
Lobe, Recipr. Multi-Cylinder	1.25	1.50	Stretcher (Paper)	1.25	1.50	(Pure Liquid)	1.00	1.25	Winders		
Recipr. Single-Cylinder	1.75	2.00	Whipper (Paper)	1.75	2.00	Proportioning Pump	1.25	1.50	(Paper)	1.00	1.25
Concrete Mixers	I	1	Flight	l, č	1	Pug Mills (Clay)	1.25	1.50	(Textile)	1.25	1.50
Continuous	1.25	1.50	Conveyor Uniform	1.00	1.25	Pullers (Barge Haul)	1.75	2.00	Windlass	1.25	1.50
ntermittent	1.25	1.50	Conveyor Heavy	1.00	1.20	Pulp Machines (Paper)	1.25	1.50	Wire	1.20	1.00
Converting Machine	1.20	1.50	Food Industry	2	1.50	Pulverizers (Hammermill)	1.25	2.00	Drawing Machine	1.25	1.50
	1.25	1.50	Forming Machine	Ű	Ű	Pulverizers (Hammermill) Pumps	1.75	2.00	Winding Machine	1.25	1.50
(Paper)	1.25	1.50		1 75	0.00		1.00	1.05	winding machine	1.20	1.50
Conveyors – Uniformly Loaded	1	I I	(Metal Mills)	1.75	2.00	Centrifugal	1.00	1.25			
	1	1	Freight Elevator	1.25	1.50	1	1	1		1	1

^① Refer to Factory. ^② Page 108.

TABLE 2 **DRIVE CHAIN SELECTION TABLES**

Rex[®] drive chain selections are displayed in the tables. To interchange Link-Belt[®] and Rex chain numbers see pages 34-35. Note:

					Та	ble 2								
DDM	Fa	HORSEPOWER or (SF) see page	s 108-109	F		DDM		F	HORSEP or (SF) se	ee page	ès 108-10	9		
RPM Driver Sprocket		R SPROCKET – NRGEST KEYSEA		-	Type of Lubrication	RPM Driver Sprocket			ER SPROG Argest M					Type of Lubrication
oprocket	9T	12T	15T	Hub Letter©		oproduct	91		12	T	15	т	Hub Letter 2	
					1	DHP								-
17 ¹ /2– 20	R432 1 ¹⁵ /16 3140 1 ¹¹ /16	R362 2 ¹¹ /16	R362 3 ¹¹ / ₁₆	Е		4–5	R514 3180	2 ¹⁵ /16	3180			5 ¹⁵ /16 3 ¹⁵ /16	гн	
15– 17 ¹ /2	R432 1 ¹⁵ /16 3140 1 ¹¹ /16	R362 2 ^{11/} 16	R362 3 ¹¹ /16	E		3–4	1030 3180	3 ⁷ /16		3 ¹¹ /16	R3112 3140	3 ¹⁵ /16		
121/2-15	R778 3 ¹¹ /16 3140 1 ¹¹ /16	R432 2 ¹¹ / ₁₆ 3120 2 ³ / ₁₆	R362 3 ¹¹ / ₁₆	E		2–3	1030	4 ⁷ /16	1030 3180	5 ¹⁵ /16 3 ¹¹ /16	3160	5 ¹⁵ /16 4 ⁷ /16	к	Called Barrier
10– 12 ¹ /2	R778 3 ⁷ / ₁₆ 3160 1 ¹⁵ / ₁₆		R432 3 ¹¹ / ₁₆		Manual	1–2	R1248	5 ⁷ /16	R1037	5 ⁷ /16	R1033 3180	8 4 ¹⁵ /16	Ν	Manual
7 ¹ /2–10	R588 3 ^{7/16} 3160 1 ^{15/16}	R778 4 ¹⁵ / ₁₆ 3140 2 ¹¹ / ₁₆	R778 4 ¹⁵ / ₁₆ 3120 3 ³ / ₁₆	F	Marida	³ /4–1	R1248		R1037		R1037 3180	8 4 ¹⁵ / ₁₆		Maridai
5-7 ¹ /2	R558 3 ³ /16	R588 4 ¹⁵ /16	R778 5 ⁷ /16	G		$^{1}/_{2}-^{3}/_{4}$	R1248	5 ⁷ /16	AX1568	5 ⁷ /16	R1037	8	Р	
0172	3180 2 ³ /16	3160 3 ³ / ₁₆	3120 3 ³ /16	ŭ		¹ /4 ¹ /2	R01306	9	RX238	7	RX238	10	S	
				_	2	DHP	_		_				_	_
35–40	R432 1 ¹⁵ /16 3140 1 ¹¹ /16	R362 2 ¹¹ /16	R362 3 ¹¹ /16	E		7 ¹ /2–10	R514 3180	2 ^{15/} 16	3140	3 ⁷ /16 2 ¹¹ /16		3 ¹⁵ /16		
30–35	R432 1 ¹⁵ /16 3140 1 ¹¹ /16	R362 2 ¹¹ / ₁₆	R362 3 ¹¹ /16	E		5-71/2	1030	3⁷/ 16	R514 3160	4 ⁷ /16 3 ³ /16	R3112 3140	3 ¹⁵ / ₁₆		
25–30	R778 3 ¹¹ /16 3140 1 ¹¹ /16	R432 2 ^{11/} 16	R362 3 ¹¹ / ₁₆	E	All A	4–5	R1037	3 ¹⁵ /16	3180	5 ¹⁵ /16 3 ¹¹ /16		5 ¹⁵ /16 4 ⁷ /16	К	de n
20–25	R778 3 ⁷ / ₁₆ 3160 1 ¹⁵ / ₁₆	R778 4 ¹⁵ / ₁₆ 3120 2 ³ / ₁₆	R432 3 ¹¹ /16	F		3–4	R1037	3¹⁵/ 16	R1037 3180			8 4 ¹⁵ /16	L	
171/2-20	R588 3 ⁷ / ₁₆ 3160 1 ¹⁵ / ₁₆	R778 4 ¹⁵ / ₁₆ 3140 2 ³ / ₁₆	R432 3 ¹¹ / ₁₆	F	Manual	2–3	R1248	5 ⁷ /16	R1037		R1037 3180	8 4 ¹⁵ /16	N	Manual
15–17 ¹ /2	R588 37/16	R778 4 ¹⁵ /16	R778 4 ¹⁵ /16	F	Manual	1-2	R1248		RX238	7	AX1568	81/2	P	Manual
12 ¹ /2–15	3160 1 ¹⁵ /16 R514 2 ⁷ /16	3140 2 ¹¹ / ₁₆ R588 4 ¹⁵ / ₁₆	R778 5 ⁷ /16	G	-	^{3/4-1}	RO635 RO1306	5 ^{7/} 16	R1248 R1248	7 ¹ /2	RX238 RX238	10 10	Q S	-
10-12 ¹ /2	3180 2 ³ / ₁₆ R514 2 ^{7/16} 3180 2 ³ / ₁₆	3120 2 ³ / ₁₆ R3112 3 ⁷ / ₁₆ 3140 2 ¹¹ / ₁₆	3120 3 ³ / ₁₆ R588 5 ⁷ / ₁₆ 3120 3 ³ / ₁₆	G		¹ /4_ ¹ /2	X1307	10	RX1207	0	RO635	1	U	
					3	<u>i</u> D H P								
45–50	R432 1 ¹⁵ /16 3140 1 ¹¹ /16	R362 2 ¹¹ / ₁₆	R362 3 ¹¹ / ₁₆	E		10-12 ¹ /2	1030 3180	37/16 ①	R514 3160	4 ^{7/16} 3 ^{3/16}	R3112 3140	4 ¹⁵ /16 3 ¹⁵ /16	I	
40–45	R778 3 ^{11/16} 3140 1 ^{11/} 16	R432 2 ¹¹ /16	R362 3 ¹¹ /16	E		7 ¹ /2–10	R1033	3 ⁷ /16	1030 3160	5 ^{15/16} 3 ^{3/16}	R514 3140	5 ^{15/16} 3 ^{15/16}		
35–40	R778 3 ¹¹ /16 3140 1 ¹¹ /16	R432 2 ¹¹ /16	R362 3 ¹¹ /16	E		5-7 ¹ /2	R1037	3¹⁵/ 16	R1033 3180			7 ¹ / ₂ 4 ⁷ / ₁₆	к	
30–35	R778 3 ^{7/16} 3160 1 ^{15/16}		R432 3 ¹¹ /16	F		4–5	R1037		D1027	57/16	R1037 3160	8 4 ⁷ /16	L	State State
25–30	R588 3 ^{7/16} 3160 1 ^{15/16}	R778 4 ¹⁵ /16	R432 3 ¹¹ /16	F		3–4	R1248	5 ⁷ /16	AX1568	5 ⁷ /16	R1037 3180	8 4 ¹⁵ / ₁₆	N	
20–25	R514 2 ⁷ / ₁₆ 3180 2 ³ / ₁₆	R588 4 ¹⁵ / ₁₆ 3120 2 ³ / ₁₆	R778 5 ⁷ /16 3120 3 ³ /16	G	Manual	2–3	R1248	5 ⁷ /16	RX238	7	AX1568		0	Manual
171/2-20	R514 2 ⁷ / ₁₆ 3180 2 ³ / ₁₆	R588 4 ¹⁵ /16	R778 5 ⁷ /16 3120 3 ³ /16	G]	1–2	RX1207	6 ¹ /2	R1248	7 ¹ /2	RX238	10	۵]
15_171/-	R514 27/16	R3112 37/16	R588 57/16	C	1	³ /4 –1	RO1306	9	RX1245	9	R1248	10	S	1
15–17 ¹ /2	3180 2 ³ /16	3140 2 ¹¹ /16		G	ļ	1/2-3/4	X1307	10	RO635	91/2	RO635	1	Т]
12 ¹ /2–15	R514 2 ¹⁵ /16 3180 ^①	R3112 3 ⁷ / ₁₆ 3140 2 ¹¹ / ₁₆	R3112 4 ¹⁵ /16 3140 3 ¹⁵ /16	н		1/4-1/2	1		RX1207	1	RX1207	1	х	

Note: 1. 3100 Series chain operates over roller chain cut tooth sprockets. 2. Fabricated steel sprockets are recommended.

① Consult Rexnord
② Hub size letter - See page 79.

TABLE 2 (Cont'd.)DRIVE CHAIN SELECTION TABLES

 $Rex^{\! \otimes}$ drive chain selections are displayed in the tables. To interchange Link-Belt^{\! \otimes} and Rex chain numbers see pages 34-35. Note:

					Table 2-	- (Cont'd.)								
		HORSEPOWER or (SF) see page		F			C				(DHP) = H es 108-10			
RPM Driver		R SPROCKET -		-	Type of Lubrication	RPM Driver					NO. OF T			Type of Lubrication
Sprocket	91	121	151	Hub Letter [©]	Labirouton	Sprocket	97		12	T	15	ग	Hub Letter®	Lubiroution
				Lottor	4	L DHP							Lottor	
80 - 90	R362 1 ¹⁵ /16 3120 1 ⁷ /16	R362 2 ¹⁵ /16	R362 3 ¹¹ /16	D		15- 17 ¹ /2	1030 3180	3 ¹¹ /16	R514 3160	4 ⁷ /16 3 ³ /16	R3112 3140	4 ¹⁵ /16 3 ¹⁵ /16		
70- 80	R432 1 ¹⁵ /16 3140 1 ¹¹ /16	R362 2 ¹¹ /16	R362 3 ¹¹ /16	E		12 ¹ /2-15	R1035	3 ⁷ /16	1030 3160	5 ¹⁵ /16 3 ³ /16	3140	5 ¹⁵ /16 3 ¹⁵ /16		
60-70	R432 1 ¹⁵ /16 3140 1 ¹¹ /16	R362 2 ¹¹ /16	R362 3 ¹¹ /16	E		10- 12 ¹ /2	R1037	3 ¹⁵ /16	3160	5 ¹⁵ /16 3 ³ /16	3160	7 4 ⁷ /16	J	
50 - 60	R778 3 ¹¹ /16 3140 1 ¹¹ /16	R432 2 ¹¹ /16	R362 3 ¹¹ /16	E		7 ¹ /2-10	R1037	3 ¹⁵ /16		5 ⁷ /16 3 ¹¹ /16	3160	71/2 47/16	К	
45 - 50	R778 3 ¹¹ /16 3140 1 ¹¹ /16	R432 2 ¹¹ /16 3120 2 ³ /16	R362 3 ¹¹ /16	E	and the second second	5- 7 ¹ /2	R1037	3 ¹⁵ /16	R1037 3180	5 ⁷ /16 3 ¹¹ /16	3160	8 4 ⁷ /16	М	A State
40-45	R778 3 ⁷ /16 3160 1 ¹⁵ /16	R778 4 ¹⁵ /16 3120 2 ³ /16 R778 4 ¹⁵ /16	R432 3 ¹¹ /16	F		4-5	R1248	5 ⁷ /16	AX1568	5 ⁷ /16		8 4 ¹⁵ /16	N	
35-40	R778 3 ⁷ /16 3160 1 ¹⁵ /16	3120 2 ³ /16	R432 3 ¹¹ /16 3120 3 ³ /16 R778 4 ¹⁵ /16	F Manual	3-4	R1248	5 ⁷ /16	RX238	7	AX1568 3180	8 ¹ /2 4 ¹⁵ /16	0	Manual	
30-35	R588 3 ⁷ /16 3160 1 ¹⁵ /16	3120 2 ³ /16	3120 3 ³ /16	F	-	2-3	R1248	5 ⁷ /16	RX238	7	RX238	10	Р	
25-30	R514 $2^{7}/16$ 3180 $2^{3}/16$	3140 2 ¹¹ /16	R778 $5^{7}/16$ 3120 $3^{3}/16$ R588 $5^{7}/16$	G	G	1 - 2	R01306	9	RX1245	9	R1248	10	S	
20-25	3180 2 ³ /16	R3112 3 ⁷ /16 3140 2 ¹¹ /16	3120 3 ³ /16	G	-		RO1306	9	RX1207	0	RO 635	0	TU	
17 ¹ /2- 20	R514 2 ¹⁵ /16 3180 ①	R3112 3 ⁷ /16 3140 2 ¹¹ /16	R588 5 ¹⁵ /16 3140 3 ¹⁵ /16	Н		$\frac{1}{2} - \frac{3}{4}$ $\frac{1}{4} - \frac{1}{2}$	X1307	10	RX1207 R01306	0	RO 635 RX1207	0	G	
	0100	0110 2 /10	0110 0 /10		51	DHP			101000		10/1207		0	
100-125	R362 1 ¹⁵ /16 3120 1 ⁷ /16	R362 2 ¹⁵ /16	R362 3 ¹¹ /16	D	2	17 ¹ /2-20	1030 3180	3 ⁷ /16	R514 3160	4 ⁷ /16 3 ³ /16	R3112 3140	4 ¹⁵ /16 3 ¹⁵ /16		
90 - 100	R432 1 ¹⁵ /16 3120 1 ⁷ /16	R362 2 ¹⁵ /16	R362 3 ¹¹ /16	D		15– 17 ¹ /2	R1037	3 ³ /16	1030 3160	5 ¹⁵ /16 3 ³ /16	R514 3160	5 ¹⁵ /16 4 ⁷ /16	I	
80-90	R432 1 ¹⁵ /16 3120 1 ¹¹ /16	R362 2 ¹¹ /16	R362 3 ¹¹ /16	E	<u>B</u>	12 ¹ /2-15	R1037	3 ¹⁵ /16	R1033 3160	5 ¹⁵ /16 3 ³ /16		7 4 ⁷ /16	J	
70- 80	R432 1 ¹⁵ /16 3140 1 ¹¹ /16	R362 2 ¹¹ /16	R362 3 ¹¹ /16	E	Flow	10- 12 ¹ /2	R1037	3 ¹⁵ /16		5 ⁷ /16 3 ¹¹ /16		71/2 4 ⁷ /16	К	
60 - 70	R778 3 ¹¹ /16 3140 1 ¹¹ /16		R362 3 ¹¹ /16	E		7 ¹ /2- 10	AX1568	3 ¹¹ /16	R1037 3180	5 ⁷ /16 3 ¹¹ /16		8 4 ¹⁵ /16	L	_
50 - 60	R778 3 ⁷ /16 3160 1 ¹⁵ /16	R788 4 ¹⁵ /16 3120 2 ³ /16	R432 3 ¹¹ /16	F		5- 7 ¹ /2	R1248	5 ⁷ /16	AX1568	5 ⁷ /16	R1037 3180	8 4 ¹⁵ /16	N	Carles and a second
45 - 50	R588 3 ⁷ /16 3160 1 ¹⁵ /16	R788 4 ¹⁵ /16 3120 2 ³ /16	R432 3 ¹¹ /16	F		4-5	R1248	5 ⁷ /16	RX238	7	AX1568	81/2	0	Manual
40-45	3160 1 ¹⁵ /16	R778 4 ¹⁵ /16 3120 2 ³ /16	3120 3 ³ /16	F		3-4	R1248	5 ⁷ /16	RX238	7	RX238	10	Р	ivanuai
35-40		3140 2 ¹¹ /16	3120 3 ³ /16	G		2-3	RO 635	5 ⁷ /16	R1248	71/2	RX238	10	Q	
30-35	$\begin{array}{ccc} R514 & 2^{7}/16 \\ 3180 & 2^{3}/16 \\ \end{array}$	3140 2 ¹¹ /16	3120 3 ³ /16	G	G Manual 3	1 - 2	RO1306	9	RO 635	9 ¹ /2	RX1245	10	S	
25-30	3180 2 ³ /16		3140 3 ¹⁵ /16	G		³ /4 – 1	X1307		RX1207	0	RO 635		U	
20-25	R514 2 ¹⁵ /16 3180 ①	R3112 3 ⁷ /16 3160 3 ³ /16	R3112 4 ¹⁵ /16 3140 3 ¹⁵ /16	Н		$\frac{1}{2} - \frac{3}{4}$ $\frac{1}{4} - \frac{1}{2}$	X1307		RX1207 R01306	0	RX1207 R01306	1	W Z	
	1				1	I · · · / -			1	-	1	-	ı -	

Note: 1. 3100 Series chain operates over roller chain cut tooth sprockets. 2. Fabricated steel sprockets are recommended. ⁽¹⁾ Consult Rexnord ⁽²⁾ Hub size letter – See page 79.

TABLE 2 (Cont'd.) DRIVE CHAIN SELECTION TABLES

Note: Rex[®] drive chain selections are displayed in the tables. To interchange Link-Belt[®] and Rex chain numbers see pages 34-35.

	DESIGN	HORSEPOWER	(DHP) = HP x S	F		- (Cont'd.)		HORSEPOWER	(DHP) = HP x SF		
RPM Driver	DRIVE	or (SF) see page R SPROCKET - ARGEST KEYSEA	NO. OF TEETH		Type of Lubrication	RPM Driver	DRIV	or (SF) see page ER SPROCKET - ARGEST KEYSEA	NO. OF TEETH		Type of Lubricatior
Sprocket	91	12Т	151	Hub Letter@		Sprocket	9ा	12T	15T	Hub Letter@	
					71/2						
300 - 350	3120 17/16	K302 219/16	R362 3 ¹¹ /16	С		35-40	R514 2 ¹⁵ /16 3180 ^①	3160 3 ³ /16	3140 3 ¹⁵ /16		
250-300	R362 1 ¹¹ /16 3120 1 ⁷ /16	R362 2 ¹⁵ /16	R362 3 ¹¹ /16	С		30-35	R514 2 ¹⁵ /16 3180 ^①	3160 3 ³ /16	3160 4 ⁷ /16	н	
200 - 250	R362 1 ¹⁵ /16 3120 1 ⁷ /16	R362 2 ¹⁵ /16	R362 3 ¹¹ /16	D	Oil Bath	25 - 30	R1033 3 ¹¹ /16 3180 ^①	R514 4 ⁷ /16 3160 3 ³ /16	R3112 4 ¹⁵ /16 3160 4 ⁷ /16	I	
175- 200	R432 1 ¹⁵ /16 3120 1 ⁷ /16	R362 2 ¹⁵ /16	R362 3 ¹¹ /16	D		20-25	R1037 3 ³ /16	1030 5 ¹⁵ /16 3160 3 ³ /16	3160 4 ⁷ /16	I	
150-175	R432 1 ¹⁵ /16 3120 1 ⁷ /16	R362 2 ¹⁵ /16	R362 3 ¹¹ /16	D		17 ¹ /2-20	R1037 3 ¹⁵ /16	3180 317/16	3160 47/16	J	
125 - 150	R432 1 ¹⁵ /16 3140 1 ¹¹ /16		R362 3 ¹¹ /16	E		15-17 ¹ /2	R1037 3 ¹⁵ /16	3180 317/16		к	Jan 1
100 - 125	R778 3 ¹¹ /16 3140 1 ¹¹ /16	3120 2 ³ /16	R362 3 ¹¹ /16	E	Д	12 ¹ /2-15	AX1568 3 ¹¹ /16	R1037 5 ⁷ /16 3180 3 ¹¹ /16	3180 4 ¹⁵ /16	К	
90 - 100	R778 3 ¹¹ /16 3140 1 ¹¹ /16	3120 2 ³ /16	R362 3 ¹¹ /16 3120 3 ³ /16	E		10– 12 ¹ /2	RX238 4 ⁷ /16	AX1568 5 ⁷ /16 3180 3 ¹¹ /16		L	Carlow Carlow
80 - 90	R778 3 ⁷ /16 3160 1 ¹⁵ /16		R432 3 ¹¹ /16 3120 3 ⁷ /16	F	Aleccedia Aleccedia	7 ¹ /2-10	RX238 4 ⁷ /16	RX238 7	AX1568 8 ¹ /2 3180 4 ¹⁵ /16	N	Manual
70 - 80	R588 3 ⁷ /16 3160 1 ¹⁵ /16			F	Flow	5- 71⁄2	R1248 57/16	RX238 7	RX238 10	0	
60 - 70	R588 3 ⁷ /16 3160 1 ¹⁵ /16	R778 4 ¹⁵ /16 3140 2 ¹¹ /16				4-5	RX1245 5 ⁷ /16		RX238 10	Р	
50 - 60	R588 3 ³ /16 3180 2 ³ /16	R588 4 ¹⁵ /16 3140 2 ¹¹ /16	R778 5 ⁷ /16 3140 3 ¹⁵ /16	G	3-4	RO 635 5 ⁷ /16 RO 1306 9	RX1245 9 RO635 9 ¹ /2	R1248 10 RX1245 10	Q R		
45 - 50	R514 2 ¹⁵ /16			G		1-2	X1307 10	RX1207 ①	RX1207 ①	U	
40 - 45	3180 2 ³ /16 R514 2 ¹⁵ /16	3140 2 ¹¹ /16 R588 4 ¹⁵ /16	3140 3 ¹⁵ /16 R588 5 ⁷ /16	G		³ /4- 1 ¹ /2 - ³ /4	X1307 91/2 ①	RO1306 ① RO1306 ①	RX1207 ① RO1306 ①	W Y	
40 - 43	3180 2 ³ /16	3160 3 ³ /16	3140 3 ¹⁵ /16	0	10	1/4 - 1/2	1	1	X1307 ①	1	
300-350	R423 1 ¹⁵ /16 3120 1 ⁷ /16	R362 2 ¹⁵ /16	R362 3 ¹¹ /16	D		DHP 40-45	1030 3 ¹¹ /16 3180 ^①	R3112 3 ⁷ /16 3160 3 ³ /16	R3112 4 ¹⁵ /16 3160 4 ⁷ /16	Н	A
250- 300	R432 1 ¹⁵ /16 3120 1 ⁷ /16	R362 2 ¹⁵ /16	R362 3 ¹¹ /16	D		35 - 40	1030 3 ⁷ /16 3180 ^①	R514 4 ⁷ /16 3160 3 ³ /16	R3112 4 ¹⁵ /16	I	Flow
200-250	R432 1 ¹⁵ /16 3120 1 ⁷ /16	R362 2 ¹⁵ /16	R362 3 ¹¹ /16	D		30-35	R1035 3 ⁷ /16	$\begin{array}{c} 1030 & 5^{15}/16 \\ 3160 & 3^{3}/16 \end{array}$		1	
175-200	R432 1 ¹⁵ /16 3140 1 ¹¹ /16	R362 2 ¹¹ /16	R362 3 ¹¹ /16	E	Oil Bath	25 - 30	R1037 3 ¹⁵ /16	1020 5154	R514 5 ¹⁵ /16	J	
150-175	R432 1 ¹⁵ /16 3140 1 ¹¹ /16	R362 Z''/16	R362 3 ¹¹ /16	E		20-25	R1037 3 ¹⁵ /16	R1037 5 ⁷ /16 3180 3 ¹¹ /16	1030 7 ¹ /2	к	
125 - 150		R432 2 ¹¹ /16	R362 3 ¹¹ /16 3120 3 ³ /16	E		17 ¹ /2- 20	AX1568 3 ¹¹ /16	R1037 57/16	R1035 71/2	к	
100-125	R588 3 ⁷ /16 3160 1 ¹⁵ /16	R778 4 ¹⁵ /16	R432 3 ¹¹ /16 3120 3 ³ /16	F		15-17 ¹ /2	RX238 4 ⁷ /16	R1037 5 ⁷ /16 3180 3 ¹¹ /16	R1037 8	L	
90 - 100	R588 3 ⁷ /16 3160 1 ¹⁵ /16	R778 4 ¹⁵ /16	R432 3 ¹¹ /16	F		12 ¹ /2- 15	RX238 47/16	AX1568 57/16	R1037 8 3180 4 ¹⁵ /16	м	
80 - 90	R588 3 ⁷ /16		R778 4 ¹⁵ /16		UP	10- 12 ¹ /2	RX238 47/16	RX238 7	AX1568 81/2	N	Manual
70 - 80	R514 2 ⁷ /16 3180 2 ³ /16	R588 4 ¹⁵ /16	R778 5 ⁷ /16	G	Flow	7 ¹ /2- 10	R1248 5 ⁷ /16	RX238 7	RX238 10	0	
60 - 70	R514 2 ⁷ /16 3180 2 ³ /16		R778 5 ⁷ /16	G		5- 7 ¹ /2 4- 5	RX1245 5 ⁷ /16 RO635 5 ⁷ /16		RX238 10 R1248 10	P Q	
50 - 60	R514 27/16	R3112 3 ⁷ /16	R588 57/16	C	G	3-4	RX1207 61/2	RO635 91/2	RX1245 10	R	
45 - 50		R3112 3 ⁷ /16	3140 3 ¹⁵ /16 R588 5 ¹⁵ /16			2-3 1-2	RO1306 9 X1307 9 ¹ /2	RX1207 ① RO1306 ①	RO 635 ① RX1207 ①	S W	
	3180 0	3160 3 ³ /16				³ /4- 1	1	RO1306 ^①	RO1306 ^①	Х	

Note: 1. 3100 Series chain operates over roller chain cut tooth sprockets. 2. Fabricated steel sprockets are recommended.

^① Consult Rexnord
^② Hub size letter – See page 79.

TABLE 2 (Cont'd.) DRIVE CHAIN SELECTION TABLES

Note: Rex[®] drive chain selections are displayed in the tables. To interchange Link-Belt[®] and Rex chain numbers see pages 34-35.

	DECION				Table 2	- (Cont'd.)					
		HORSEPOWER or (SF) see page		F				I HORSEPOWER for (SF) see page			
RPM		ER SPROCKET -			Type of	RPM		ER SPROCKET -			Type of
Driver		ARGEST KEYSEA			Lubrication	Driver		ARGEST KEYSEA			Lubrication
Sprocket	9T	12T	151	Hub	1	Sprocket	9T	12T	15T	Hub	1
				Letter ²						Letter [®]	
	D422 1154a				15	DHP		1020 51540	DE14 E1540		1 19
300-350	3140 I''/16	R432 2 ¹⁵ /16	R362 3 ¹¹ /16	D		40-45	R1037 315/16	3160 3%16	3160 4 ⁷ /16	J	
250- 300	R432 1 ¹⁵ /16 3140 1 ¹¹ /16	R432 2 ¹¹ /16	R362 3 ¹¹ /16	E		35 - 40	R1037 315/16	R1033 5 ¹⁵ /16 3180 3 ¹¹ /16		J	100000
200-250	R778 3 ¹¹ /16 3140 1 ¹¹ /16	R432 2 ¹¹ /16 3120 2 ³ /16	R362 3 ¹¹ /16	E		30-35	R1037 315/16	R1037 5 ⁷ /16 3180 3 ¹¹ /16	R1003 7 ¹ /2 3160 4 ⁷ /16	К	Reccell
175- 200	R588 3 ¹¹ /16 3160 1 ¹⁵ /16	R432 2 ¹¹ /16	R432 3 ¹¹ /16	E	Oil Bath	25 - 30	AX1568 3 ¹¹ /16	D1027 57/10	R1037 71/2	К	Flow
150-175	R588 3 ⁷ /16 3160 1 ¹⁵ /16	R778 4 ¹⁵ /16	R432 3 ¹¹ /16 3120 3 ³ /16	F		20-25	RX238 4 ⁷ /16	AX1568 5 ⁷ /16	R1037 8 3180 4 ¹⁵ /16	L	
125-150	R3112 2 ³ /16 3160 1 ¹⁵ /16	R778 4 ¹⁵ /16 3120 2 ³ /16	R432 3 ¹¹ / ₁₆ 3120 3 ³ / ₁₆	F		17 ¹ /2-20	RX238 4 ⁷ /16	RX238 7	R1037 8	М	-
100-125	R514 27/16	R588 4 ¹⁵ /16	R788 57/16	G	۳ ۲		R1248 4 ⁷ /16		AX1568 8 ¹ /2	N	1
90-100	3160 2 ³ /16 R514 2 ⁷ /16	3140 2 ¹¹ / ₁₆ R588 4 ¹⁵ / ₁₆	3120 3 ³ /16 R788 5 ⁷ /16	G			R1248 5 ⁷ /16		RX238 10	0	-
80-90	3180 2 ³ /16 R514 2 ⁷ /16	3140 2 ¹¹ /16 R3112 3 ⁷ /16	3140 3 ¹⁵ /16 R588 5 ⁷ /16	G	<u>filessedt</u>		RX1245 5 ⁷ /16		RX238 10	0	-
	3180 2 ³ /16 R514 2 ¹⁵ /16	3140 2 ¹¹ /16 R3112 3 ⁷ /16	3140 3 ¹⁵ /16 R588 5 ¹⁵ /16		<u>Alteccell</u> A		RO635 57/16		R1248 10	P	
70 - 80	3180 0	3140 2 ¹¹ /16		Н	Flow	5- 7 ¹ /2	RX1207 6 ¹ /2	RO635 91/2	RX1245 10	Q	Manual
	1030 3 ¹¹ /16	R3112 37/16	R3112 4 ¹⁵ /16		1	4-5	RO1306 9	RO635 91/2	RO635 ^①	R	1
60 - 70	3180 ①	3160 37/16	3140 3 ¹⁵ /16	Н		3-4	RO1306 9	RX1207 ①	RO635 ①	S	1
50 - 60	R1033 3 ¹¹ /16	R514 47/16	R3112 4 ¹⁵ /16	1	1	2-3	X1307 10	R01306 ①	RX1207 ①	U	1
50- 60	K1033 3 /16	3160 3 ³ /16	3160 4 ⁷ /16	I		1-2	0	R01306 ^①	RO1306 ①	Y]
45 - 50	R1037 3 ³ /16	1030 5 ¹⁵ /16	R514 5 ¹⁵ /16	1		³ /4- 1	0	RO1306 ①	RO1306 ①	Z	
10 00		3160 3 ³ /16	3160 4 ⁷ /16	•		1/2 - 3/4	1	1	X1307 ①	1	
		D 400 015/			20				1000 7		
300-350	3160 1¹⁵/ 16		R432 3 ¹¹ /16	E		40 - 50	R1037 315/16	3180 317/16	3160 4 ⁷ /16	J	
250-300	R514 2 ¹⁵ /16 3160 1 ¹⁵ /16		R342 3 ¹¹ /16 3120 3 ³ /16	E		40-45	R1037 3 ¹⁵ /16	R1037 5 ⁷ /16 3180 3 ¹¹ /16	R1033 7 ¹ /2 3180 4 ¹⁵ /16	К	Д
200-250	R514 2 ¹¹ /16 3160 1 ¹⁵ /16	R778 4 ¹⁵ /16 3120 2 ³ /16	R432 3 ¹¹ /16 3120 3 ³ /16	F		35 - 40	AX1568 3 ¹¹ /16	R1037 5 ⁷ /16 3180 3 ¹¹ /16		К	
175- 200	R514 2 ¹¹ /16 3160 1 ¹⁵ /16	R778 4 ¹⁵ /16 3120 2 ³ /16	R432 3 ¹¹ /16 3120 3 ³ /16	F	Oil Bath	30-35	RX236 4 ⁷ /16	R1037 5 ⁷ /16	R1037 8 3180 4 ¹⁵ /16	L	
150-175		R778 4 ¹⁵ /16 3140 2 ¹¹ /16	R778 4 ¹⁵ /16 3120 3 ³ /16	F		25 - 30	RX238 4 ⁷ /16	AX1568 5 ⁷ /16	R1037 8	М	Flow
125-150	R514 2 ⁷ /16 3180 2 ³ /16	R3112 3 ⁷ /16 3140 1 ¹¹ /16	R778 5 ⁷ /16	G		20-25	R1248 47/16	RX238 7	AX1568 81/2	N	1
100-125	R514 2 ⁷ /16	R3112 3 ⁷ /16 3140 2 ¹¹ /16	R588 5 ⁷ /16	G		171/2- 20	R1248 57/16	RX238 7	RX238 10	0	1
90-100	R514 2 ¹⁵ /16 3180 ^①	R3112 3 ⁷ /16	R588 5 ¹⁵ /16	Н	A	15– 17½	RX1245 5 ⁷ /16	R1248 8	RX238 10	0	
80-90	1030 3 ¹¹ /16	3160 3 ³ /16 R3112 3 ⁷ /16	R3112 4 ¹⁵ /16	Н			RO635 5 ⁷ /16		RX238 10	0	
20 00		3100 39/16	3160 4 ⁷ /16		J()		R0635 57/16		RX1248 10	0	AND
70-80	R1033 3 ¹¹ /16	1030 5 ¹⁵ /16 3160 3 ³ /16	R3112 4 ¹⁵ /16 3160 4 ⁷ /16	I		7 ¹ /2- 10 5- 7 ¹ /2	RX1207 6 ¹ /2 RO1306 9	RO635 9 ¹ /2 RO635 9 ¹ /2	RO635 ① RO635 ①	Q S	
60 - 70	R1037 3 ³ /16	1030 5 ¹⁵ /16 3160 3 ³ /16		I		4-5	RO1306 9 X1307 10	RX1207 ① RO1306 ①	RX1207 ① RX1207 ①	S U	Manual
		R1033 5 ¹⁵ /16			-	3-4		R01306 U R01306 U	RX1207 U RO1306 0	W	4
50-60	R1037 3 ¹⁵ /16	3180 3 ¹¹ /16		J		1-2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	X1307 0	R01307 0	Z	1
		5100 0 /10	3100 1710					11307 0		L _	1

Note: 1. 3100 Series chain operates over roller chain cut tooth sprockets. 2. Fabricated steel sprockets are recommended. © Consult Rexnord © Hub size letter – See page 79.

TABLE 2 (Cont'd.) **DRIVE CHAIN SÉLECTION TABLES**

Note: Rex[®] drive chain selections are displayed in the tables. To interchange Link-Belt[®] and Rex chain numbers see pages 34-35.

RPM		HORSEPOWER or (SF) see page	(DHP) = HP x S es 108-109	F		- (Cont'd.) RPM	DESIGN F				
Driver		ER SPROCKET - Argest Keyse/			Type of Lubrication	Driver		ER SPROCKET - Argest keysea			Type of Lubrication
Sprocket	91	121	151	Hub Letter@	,	Sprocket	भ	121	151	Hub Letter@	
					25	DHP					
300-350	3160 119/16	3120 2 ³ /16	R432 317/16	E		50-60	R1037 3 ¹⁵ /16	3180 317/16	3180 4 ¹⁵ /16	K	~
250-300	3160 113/16		3120 3 ³ /16	F		45 - 50	AX1568 3 ¹¹ /16	R1037 5 ⁷ /16 3180 3 ¹¹ /16		K	
200-250	3180 2%/16	R588 4 ¹⁵ /16 3140 2 ¹¹ /16 R3112 3 ⁷ /16		F		40-45	RX238 4 ⁷ /16	R1037 5 ⁷ /16	R1037 8 3180 4 ¹⁵ /16	L	
175-200	3180 2 ³ /16	3140 2 ¹¹ /16		G		35 - 40	RX238 47/16	R1037 57/16	R1037 8	L	Aleccell
150-175	3180 2 ³ /16	R3112 3 ⁷ /16 3140 2 ¹¹ /16 R3112 3 ⁷ /16		G	Oil Bath	30-35		AX1568 57/16	R1037 8	M	Flow
125-150	R514 2 ⁷ /16 3180 2 ³ /16	3160 3 ³ /16	3140 3 ¹⁵ /16	G		25 - 30	R1248 4 ⁷ /16		AX1568 8 ¹ /2	N	
100-125	1030 3 ¹¹ /16	R3112 3 ⁷ /16 3160 3 ³ /16	R3112 3 ⁷ /16 3140 3 ¹⁵ /16	Н		20 - 25	RX1245 5 ⁷ /16 RO635 5 ⁷ /16	RX238 7 R1248 8	RX238 10 RX238 10	0	
			R3112 4 ¹⁵ /16		P7		RO635 57/16 RO635 57/16		R1238 10	P	
90 - 100	R1030 3 ¹⁵ /16	$3160 3^{3}/16$	3160 4 ⁷ /16	I		12 ¹ /2-15			R1248 10	P	
			R3112 4 ¹⁵ /16			12 / 2 10 $10 - 12^{1} / 2$		RO 635 9 ¹ /2	R0635 ^①	Q	State D-
80 - 90	R1037 3 ³ /16	3160 3 ³ /16	3160 4 ⁷ /16	1	<u>AB</u>	7 ¹ /2- 10		RO635 9 ¹ /2	RO 635 ^①	R	
70 00	D1007.02/	1030 5 ¹⁵ /16	R514 5 ¹⁵ /16		1 Aleccell	5-7 ¹ /2	RO1306 9	RX1207 ^①	RX1207 ^①	S	C.S. Carrow
70 - 80	R1037 3 ³ /16	3180 311/16		1	Flow	4-5	X1307 10		RX1207 ^①	Т	Manual
60 - 70	R1037 3 ¹⁵ /16	R1033 5 ¹⁵ /16		J	1	3-4	X1307 9 ¹ /2	RO1306 ^①	RO1306 ^①	V	
00-70	K1037 319/16	3180 3 ¹¹ /16	3160 4 ⁷ /16	J		2-3	1	X1037 ^①	R01306 ^①	Х	
				-	30	DHP					
300 - 350	3180 2 ³ /16	R3112 3 ⁷ /16 3140 2 ¹¹ /16		F		50-60	AX1568 3 ¹¹ /16	R1037 5 ⁷ /16	R1037 7 ¹ /2 3180 4 ¹⁵ /16	K	
250-300	3180 Z ³ /16	R3112 3 ⁷ /16 3140 2 ¹¹ /16		F		45 - 50	RX238 4 ⁷ /16	R1037 5 ⁷ /16	R1037 8 3180 4 ¹⁵ /16	L	A
200-250	3180 23/16	R3112 3 ⁷ /16 3160 3 ³ /16	R788 5 ⁷ /16 3140 3 ¹⁵ /16	G		40-45	RX238 4 ⁷ /16	AX1568 5 ⁷ /16	R1037 8	L	<i>B</i> B SSS B
175-200	R514 2 ⁷ /16 3180 2 ³ /16	R3112 3 ⁷ /16 3160 3 ³ /16	R588 5 ⁷ /16 3140 3 ¹⁵ /16	G		35-40	RX238 4 ⁷ /16	RX238 7	R1037 8	Μ	Reccell
150-175	5 R415 27/16	R3112 3 ⁷ /16 3160 3 ³ /16		G	Oil Bath	30-35	R1248 47/16	RX238 7	AX1568 8 ¹ /2	N	Flow
125-150	1030 3 ¹¹ /16	3160 3 ³ /16	R3112 4 ¹⁵ /16 3140 3 ¹⁵ /16	Н			R1248 57/16		RX238 10	0	
100-125	R1035 3 ⁷ /16		R3112 4 ¹⁵ /16 3160 4 ⁷ /16	Ι			RO635 5 ⁷ /16 RO635 5 ⁷ /16		RX238 10 R1248 10	0 P	
90 - 100	R1037 3 ³ /16	1030 5 ¹⁵ /16 3180 3 ¹¹ /16	R514 5 ¹⁵ /16 3160 4 ⁷ /16	I]		RO635 5 ⁷ /16 RX1207 6 ¹ /2		R1248 10 RX1245 10	P Q	a
80-90	R1037 3 ¹⁵ /16	1020 515/10	1030 7	J	A	10- 12 ¹ /2	RX1207 6 ¹ /2		RO635 ① RO635 ①	Q S	
		D1005 57/1-				5- 7 ¹ /2			RX1207 ①	S T	
70 - 80	R1037 3 ¹⁵ /16	R1035 5 ⁷ /16 3180 3 ¹¹ /16	1030 7 3160 4 ⁷ /16	J	DReccell	4-5			R01306 0	U	Manual
		D1007 57/			Reccell	3-4		R01306 0	RX1306 ^①	W	Ivariuai
60-70	R1037 3 ¹⁵ /16	3180 311/16	3180 4 ¹⁵ /16	K	Flow	2-3	1		R01306 ^①	Y	1

Note: 1. 3100 Series chain operates over roller chain cut tooth sprockets. 2. Fabricated steel sprockets are recommended.

¹ Consult Rexnord
² Hub size letter – See page 79.

TABLE 2 (Cont'd.) DRIVE CHAIN SÉLECTION TABLES

Note: Rex[®] drive chain selections are displayed in the tables. To interchange Link-Belt[®] and Rex chain numbers see pages 34-35.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ge's 108-109 - NO. OF TEETH ATED BORE 15T 6 R1037 8 3180 4 ⁵ /16	Hub Letter@	Type of Lubrication
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	R1037 8 3180 4 ⁵ /16 R1037 8 R1037 8 AX1568 8 ¹ /2	Letter [®] L M M	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6 R1037 8 3180 4 ⁵ /16 6 R1037 8 R1037 8 AX1568 8 ¹ /2	Letter [®] L M M	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	 ⁶ 3180 4⁵/16 R1037 8 R1037 8 AX1568 8¹/2 	M	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 ⁶ 3180 4⁵/16 R1037 8 R1037 8 AX1568 8¹/2 	M	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R1037 8 AX1568 8 ¹ /2	M	
$2.0-250$ 3180 2^{3} /16 3160 3^{3} /16 3140 3^{5} /16 G 40-45 RX238 47/16 RX238 7	AX1568 8 ¹ /2		
175 200 DE14 2760 R3112 3'/16 R3112 4'/16 C / 21 D1 D1 D40 476 DV000 7		N	(
175 - 200 R514 27/16 3160 3 ³ /16 3140 3 ⁵ /16 G 35 - 40 R1248 47/16 RX238 7	RX238 10		Reccoll
150-175 1030 3 ¹¹ / ₁₆ R3112 3 ⁷ / ₁₆ R3112 4 ⁵ / ₁₆ H 3160 3 ³ / ₁₆ 3140 3 ⁵ / ₁₆ H 3140 3 ⁵ / ₁₆ H		0	Flow
125-150 R1035 3 ⁷ / ₁₆ 1030 5 ⁵ / ₁₆ R3112 4 ⁵ / ₁₆ I 3160 3 ³ / ₁₆ 3160 4 ⁷ / ₁₆ I Oil Bath 25-30 RX1245 5 ⁷ / ₁₆ R1248 8	RX238 10	0	
$100 - 125 R1037 3^{3}/16$ $1030 5^{5}/16 R514 5^{5}/16 R514 5^{5}/16 R514 5^{5}/16 R514 88 R1248 8$	R1248 10	Р	
$100 - 123 \times 1037 - 39716 = 3180 - 3171/6 = 3160 - 477/16 = 171/2 - 20 \text{ RO}635 - 577/16 \text{ RO}635 - 91/2 = 171/2 - 20 \text{ RO}635 - 577/16 \text{ RO}635 - 91/2 = 171/2 =$	-	P	
90 - 100 R1037 $3^{5}/_{16}$ R1033 $5^{5}/_{16}$ 1030 7 J $15 - 17^{1}/_{2}$ RX1207 $6^{1}/_{2}$ R0635 $9^{1}/_{2}$ 3180 $3^{11}/_{16}$ 3160 $4^{7}/_{16}$ J $12^{1}/_{2} - 15$ RX1207 $6^{1}/_{2}$ R0635 $9^{1}/_{2}$		Q	-
	110 000	Q	Be.
180 - 90 R1037 $35/16$ R1033 $37/16$ 1030 7	100000	R	
	RX1207 ^①	S	
70 - 80 R1037 $3^{5}/16$ R1037 $5^{7}/16$ R1033 $7^{1}/2$ K $5 - 71/2$ X1307 10 R01306 0	RO1306 ①	U	
3180 3176 3180 4976 4-5 X1307 91/2 K01306 U	RO1306 ①	V	Manual
$60-70$ RX238 $4^{7}/16$ R1037 $5^{7}/16$ R1035 $7^{1}/2$ K $\frac{1000}{1000}$ $3-4$ 0 R01306 0	RO1306 0	X	4
3180 49/16 Flow 2-3 U U	X1307 ^①	Z	
40 DHP	-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	⁶ 81037 8 3180 4 ¹⁵ /16	₆ L	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 R1037 8	М	A
$200-250 \text{R514} 2^{7}\text{/}_{16} \begin{array}{c} \text{R3112} 3^{7}\text{/}_{16} \\ 3160 3^{3}\text{/}_{16} \end{array} \begin{array}{c} \text{R3112} 4^{5}\text{/}_{16} \\ 3140 3^{5}\text{/}_{16} \end{array} \begin{array}{c} \text{G} \\ \text{G} \end{array} \qquad \begin{array}{c} 45-50 \text{RX238} 47\text{/}_{16} \\ \text{RX238} 47\text{/}_{16} \\ \text{RX238} 7 \end{array} $	R1037 8	М	
$175-200 R514 2^{5/16} \begin{array}{c} 1030 5^{5/16} R3112 4^{5/16} \\ 3160 3^{3/16} \end{array} \begin{array}{c} R3112 4^{5/16} \\ 3140 3^{5/16} \end{array} \begin{array}{c} H \end{array}$	AX1568 81/2	N	(Keeel) Theready
150-175 R1033 3 ⁵ /16 1030 5 ⁵ /16 R3112 4 ⁵ /16 H	RX238 10	0	Flow
3160 3°/16 3160 4′/16 30- 35 RX1245 5′/16 R1248 8	RX238 10	0	11000
125-150 R1037 3 ⁷ /16 1030 5 ⁵ /16 R3112 4 ⁵ /16 I Oil Bath 20 25 30 R0635 5 ⁷ /16 R1248 8	RX238 10	0	
3180 317/16 3180 4/76 20-25 R0635 57/16 R0635 97/2		P	
	2 RX1245 10	Q	-
3100 317/16 3100 47/16 15-17/2RX1207 61/2 RU635 91/2	≥ RO635 ①	Q	
90-100 R1037 3 ⁵ / ₁₆ R1035 5 ⁷ / ₁₆ 1030 7 3180 3 ¹¹ / ₁₆ 3180 4 ⁵ / ₁₆ J 12 ¹ / ₂ -15RX1207 6 ¹ / ₂ RX1207 0 10-12 ¹ / ₂ R01306 9 RX1207 0	RO 635 ①	R	
	RX1207 ①	S T	A STREET
80 - 90 R1037 $3^{5}/_{16}$ R1037 $5^{7}/_{16}$ R1033 $7^{1}/_{2}$ K $7^{1}/_{2}$ - 10 R01306 9 RX1306 0 3180 $4^{5}/_{16}$ K 5 - 71/2 X1307 10 R01306 0	RX1207 ①	T U	
3100 4-718 5- 71/2 X1307 10 K01300 U	RO1306 ① RO1306 ①		
70 - 80 AX1568 3 ¹¹ / ₁₆ R1037 5 ⁷ / ₁₆ R1035 8 3180 4 ⁵ / ₁₆ L Flow <u>4-5</u> X1307 9 ¹ / ₂ R01306 0 2-3 0 R01306 0		W	Manual
3100 4 ⁹ /16 Z-3 U RU1306 U	R01306 ①	Х	
45 DHP 300- 350 R514 2 ⁷ / ₁₆ R3112 3 ⁷ / ₁₆ R3112 4 ⁵ / ₁₆ G 175- 200 R1033 3 ⁵ / ₁₆ 1033 5 ⁵ / ₁ 3180 2 ³ / ₁₆ 3160 3 ³ / ₁₆ 3140 3 ⁵ / ₁₆ G	6 R3112 4 ⁵ /16 6 3140 3 ⁵ /16		\nearrow
and and and a start of the R3112 37/16 R3112 45/16 and the rest of	6 R3112 45/16		
200 250 P1022 25/c 1030 55/16 R3112 45/16 H 0il Rath 125 150 P1027 27/c R1033 55/1	6 1030 6 ¹ /2		
Note: 1. 3100 Series chain operates over roller chain cut tooth sprockets.	16 3160 4 ⁷ /16		Oil Bath

Note: 1. 3100 Series chain operates over roller chain cut tooth sprockets. 2. Fabricated steel sprockets are recommended. ⁽¹⁾ Consult Rexnord ⁽²⁾ Hub size letter – See page 79.

TABLE 2 (Cont'd.) **DRIVE CHAIN SÉLECTION TABLES**

Note: Rex[®] drive chain selections are displayed in the tables. To interchange Link-Belt[®] and Rex chain numbers see pages 34-35.

	DESIGN	HORSEPOWER	(DHD) – חם י נ	F		- (Cont'd.)		FSICN	HUDGED		(DHP) = H	D v CL		
		or (SF) see page		r			"				(DHP) = H es 108-109			
RPM Driver		ER SPROCKET - ARGEST KEYSE		-	Type of Lubrication	RPM Driver					NO. OF TE			Type of Lubrication
Sprocket	9T	12T	15T	Hub Letter@	1	Sprocket	91		12		15		Hub Letter [©]	Lubricau or
				LCucio		l - Conťd							LCULIO	
100 105	D1007 015 /	R1035 5 ⁷ /16	R1033 7		~			F 7/	D1040	0	DV000	10		1
100-125	R1037 3 ¹⁵ /16		3180 4 ¹⁵ /16	J		30 - 35	RO 635		R1248	8	RX238	10	0	
90 - 100	AX1568 3 ¹¹ /16	R1037 57/16	R1033 7 ¹ /2	к		35 - 30	RO 635			8	RX1248	10	P	BASSED A
			3180 413/16			20 - 25	RX1207	$6^{1}/_{2}$	R0635	$9^{1}/2$	RX1245	10	Q	
80 - 90	RX238 4 ⁷ /16	R1037 5 ⁷ /16	R1035 7 ¹ /2 3180 4 ¹⁵ /16	К	Oil Bath	17 ¹ /2- 20 15- 17 ¹ /2		$6^{1}/_{2}$ $6^{1}/_{2}$	RO635 RO635	9 ¹ /2 9 ¹ /2	RO635 RO635	0	Q Q	<u>Neccell</u>
70-80	RX238 47/16	R1037 57/16	1037 8				R01036	9	RX1207	<u>9.72</u>	R0635	1	R	Flow
		AX1568 57/16	1037 8		1 🛛	10- 12 ¹ /2		9	RX1207	0	RX1027	1	S	B.
	R1248 4 ⁷ /16		1037 8	M		71/2-10		10	R01306	1	RX1027	1	T	-
45 - 50	R1248 47/16	RX238 7	AX1568 81/2	N	<u>AB5559</u>	5- 7 ¹ /2	X1307	9 ¹ / ₂	R01306	1	R01306	1	V	
40 - 45	R1248 47/16	RX238 7	RX238 10	N	JARCCCR	4-5	0		R01306	1	RO1306	1	W	Manual
35 - 40	RX1245 57/16	R1248 8	RX238 10	0	Flow	3-4	1		1		R01306	1	Y	
			15		50	DHP								
300- 350	R514 27/16	R514 4 ⁷ /16 3160 3 ³ /16	R3112 4 ¹⁵ /16 3140 3 ¹⁵ /16	G		60 - 70	RX238	47/16	RX238	7	R1037	8	М	
250- 300	R1035 3 ¹⁵ /16	R514 47/16	R3112 4 ¹⁵ /16	G	1	50 - 60	R1248	47/16	RX 238	7	AX1568	81/2	N	1
200 000		3160 3 ³ /16			1		KTZ40	4 /10	10,200	,	/////000	0 /2		Д
200-250	R1035 3 ¹¹ /16	1030 5 ¹⁵ /16 3160 3 ³ /16	R3112 4 ¹⁵ /16 3140 3 ¹⁵ /16	н		45 - 50	R1248	4 ⁷ /16	RX238	7	RX238	9	N	
175 000	D1007.07/	D1022 E1540	R3112 4 ¹⁵ /16		1	40-45	RX1245	5 ⁷ /16	RX238	7	RX238	9 ¹ /2	0	(DASSEN)
175-200	R1037 3 ⁷ /16	3180 3 ¹¹ /16				35 - 40	R0635	5 ⁷ /16	R1248	8	RX238	9 ¹ /2	0	Later a
150_ 175	R1037 37/16	R1033 5 ¹⁵ /16				30-35	R0635		RX1245	8	R1248	10	Р	Flow
100 170		3180 3 ¹¹ /16		' 		25 - 30		5 ⁷ /16	R0635	9 ¹ /2	R1248	10	Р	11000
125-150	R1037 3 ¹⁵ /16	R1033 5 ¹⁵ /16		J			RX1207	$6^{1}/_{2}$	R0635	9 ¹ /2	R0635	0	Q	
		3180 3 ¹¹ /16			Oil Bath		RX1207	6 ¹ /2	RO635	9 ¹ /2	R0635	1	Q	4
100-125	R1037 3 ¹⁵ /16	R1037 5 ⁷ /16 3180 3 ¹¹ /16		К		15-17/2 12 ¹ /2-15	RO1306	9	RX1207 RX1207	0	RO 635 RX1 207	0	R S	-
			R1035 7 ¹ /2		ł	12 / 2 = 13 $10 - 12^{1} / 2$		9	R01036	0	RX1207	1	S	
90 - 100	AX1 <i>5</i> 68 3 ¹¹ /16	R1037 5 ⁷ /16	3180 4 ¹⁵ /16	K		$7^{1}/_{2}$ - 10		10	R01036	1	R01306	1	U	A REAL OF
<u> </u>	DV220 47/c	D1027 57/10	1037 8		1	5-7 ¹ /2	X1307	9 ¹ /2	R01036	1	R01306	1	W	
80 - 90	RX238 41/16	R1037 57/16	3180 4 ¹⁵ /16	L		4-5	0		X1307	1	R01306	1	Х	Contraction of the second
70 - 80	RX238 4 ⁷ /16	R1037 5 ⁷ /16	1037 8	L		3-4	1		1		X1307	1	Z	Manual
					60	DHP	i							
300-350	R1035 3 ¹⁵ /16	R514 4 ⁷ /16	R3112 4 ¹⁵ /16 3140 3 ¹⁵ /16	G		70 - 80	RX238	47/16	RX238	7	R1037	8	М	
250 200	R1037 3 ¹¹ /16	R514 4 ⁷ /16	R3112 4 ¹⁵ /16		ł	60 70	R1248	1740	02220	7	AX1568	016	N	Oil Bath
230-300	K1037 3.776	3180 3.716			1									ļ
200-250	R1037 3 ⁷ /16	R1033 5 ¹⁵ /16 3180 3 ¹¹ /16		1			RX1245			7	RX238	$9^{1}/_{2}$	0	
							RO 635			8	RX238 RX238	91/2	0	I A
175-200	R1037 3 ⁷ /16	R1033 5 ¹⁵ /16 3180 3 ¹¹ /16		1	1/25-8		RO 635 RO 635			8	R1248	9 ¹ /2	P	
		D1022 5154					R0 635			-	R1248	10	P	1935559D
150-175	R1037 3 ¹⁵ /16		3180 4 ¹⁵ /16	J			RX1207			9 ¹ /2	R0635	1	Q	(Aleccella
105 150	AV1 500 0 ¹¹ (D1007 = 577	R1033 7		Oil Bath		RX1207			9 ¹ /2	R0635	1	Q	Flow
125-150	HX1508 3''/16	R1037 5 ⁷ /16	3180 4 ¹⁵ /16	J		171/2- 20		9	RX1207	1	R0635	1	R	
100_125	RX228 1740	R1037 5 ⁷ /16	1037 7 ¹ /2	к]	15- 17 ¹ /2			RX1207	1	RX1207	1	S	
			3100 4:0/16		1	12 ¹ /2-15			R01306	0	RX1207	1	S	
		R1037 57/16		L	ļ	$10 - 12^{1/2}$			R01306		RX1207	1	T	Manual
80-90		AX1568 5 ⁷ /16	1037 8 er chain cut tooth	L		7 ¹ /2- 10	XT307	10	R01306	1	R01306	1	U	

Note: 1. 3100 Series chain operates over roller chain cut tooth sprockets. 2. Fabricated steel sprockets are recommended. © Consult Rexnord @ Hub size letter – See page 79.

TABLE 2 (Cont'd.) DRIVE CHAIN SELECTION TABLES

Note: Rex[®] drive chain selections are displayed in the tables. To interchange Link-Belt[®] and Rex chain numbers see pages 34-35.

	DEGLON			-	Table 2	– (Cont'd.)				0.455		ID 05		1
		HORSEPOWER or (SF) see paq	(DHP) = HP x S es 108-109	F			[(DHP) = H es 108-10			
RPM Driver	DRIVE	R SPROCKET -	NO. OF TEETH		Type of	RPM Driver					NO. OF T			Type of
Sprocket	L/	ARGEST KEYSE	ATED BORE		Lubrication	Sprocket		L	ARGEST K	EYSEA	TED BORI	E		Lubrication
	9T	12T	151	Hub Letter [©]			91		12	Г	15	Г	Hub Letter ²	
					70	DHP								
300 – 350		R514 4 ⁷ /16 3180 3 ¹¹ /16		Н		60 – 70	RX1245	57/16	RX238	7	RX238	9 ¹ / ₂	0	0 il Bath
250 – 300	R1037 37/16	1030 5 ¹⁵ /16 3180 3 ¹¹ /16		I		50 – 60	RO 635	57/16	R1248	8	RX238	91/ ₂	0	UIIDaui
200 – 250	R1037 3 ⁷ /16	R1033 5 ¹⁵ /16 3180 3 ¹¹ /16		I		45 – 50 40 – 45	RO 635 RO 635	5 ⁷ /16 5 ⁷ /16	R1248 RX1245	8 8	RX238 R1248	9 ¹ / ₂	0 P	-
175 200	R1037 3 ¹⁵ /16	R1033 5 ¹⁵ /16	R1033 7				RX1207	6 ¹ /2	R0 635	9 ¹ / ₂	R1248	10	P	I A
175-200	KTU37 3 ⁻² /16	3180 3 ¹¹ /16	3180 4 ¹⁵ /16	J			RX1207	61/2	RO 635	9 ¹ / ₂	RO 635	1	Q	
150–175	AX1568 3 11/16	R1037 57/16	R1033 7 3180 4 ¹⁵ /16	J	Care and the second		RX1207	6 ¹ /2	R0 635	9 ¹ /2	R0 635	1	Q R	<u>AB-5559</u>
			R1035 7 ¹ /2		0 il Bath	$17^{1}/_{2} - 20$	RO1306 RO1306	9	RX1207 RX1207	0	R0 635 RX1027	0	к S	Reccell
125–150	RX238 4 ⁷ /16	R1037 5 ⁷ /16	3180 4 ¹⁵ /16	K		$15 - 17^{1/2}$		9	R01306	1	RX1027	1	S	Flow
100–125	RX238 4 ⁷ /16	R1037 5 ⁷ /16	R1037 8	L		12 ¹ /2-15	R01306	9	R01306	1	RX1027	1	T	1
		AX1568 5 ⁷ /16	R1037 8	М		10–12 ¹ /2		10	R01306	1	R01306	1	U	
		RX238 7	R1027 8	М		7 ¹ /2-10	1		R01306	0	R01306	1	V	
70 – 80	R1248 4 ⁷ /16	RX238 7	AX1568 8 ¹ /2	Ν		$5 - 7^{1/2}$	1		X1307	1	X1307	1	Y	Manual
		R1035 57/16	R514 5 ¹⁵ /16		80	DHP			1					
300 – 350		3180 3 ¹¹ /16	3160 4 ⁷ /16	Н		50 – 60	RO 635	5 ⁷ /16	R1248	8	RX238	9 ¹ /2	0	
250 – 300	AX1568 2 ¹⁵ /16	3100 3.776	R514 5 ¹⁵ /16 3180 4 ¹⁵ /16	I		45 – 50	RO 635	5 ⁷ /16	RO 635	9 ¹ /2	R1248	10	Р	0 il Bath
200 – 250	AX1568 3 ¹¹ /16	R1035 5 ⁷ /16 3180 3 ¹¹ /16	R1033 7 3180 4 ¹⁵ /16	J		40 – 45	RX1207	6 ¹ /2	RO 635	9 ¹ /2	R1248	10	Р	
175–200	AX1568 3 ¹¹ /16	R1037 5 ⁷ /16	R1033 7 3180 4 ¹⁵ /16	J			RX1207 RX1207	$6^{1/2}$ $6^{1/2}$	RO 635 RO 635	9 ¹ / ₂ 9 ¹ / ₂	R0 635 R0 635	1	Q Q	Ą
			R1035 7 ¹ /2				R01306	9	RX1207	1	R0 635	0	R	
150–175	RX238 4 ⁷ /16	R1037 5 ⁷ /16	3180 4 ¹⁵ /16	K			R01306	9	RX1207	0	RX1207	1	S	(Dessed)
125–150	RX238 4 ⁷ /16	R1037 57/16	R1037 8	L	0 il Bath	$17^{1/2} - 20$		9	R01306	1	RX1207	1	S	((Keerer k)
100-125	RX238 4 ⁷ /16	AX1568 57/16	R1037 8	М		15–17 ¹ /2	R01306	9	R01306	1	RX1207	1	Т	
90 – 100	R1248 4 ⁷ /16	RX238 7	AX1568 8 ¹ /2	М		12 ¹ /2-15	R01306	8 ¹ /2	R01306	1	R01306	1	U	Flow
80 – 90	RX1245 47/16	RX238 7	AX1568 81/2	Ν		10-12 ¹ /2	1		R01036	1	R01306	1	U	1
70 – 80	RO635 57/16	RX238 7	RX238 91/2	0		7 ¹ /2-10	1		X1307	1	R01306	1	W	1
60 – 70	R0635 5 ⁷ /16	R1248 8	RX238 9 ¹ /2	0		5 – 71/2	1		1		X1307	1	Y	Manual
				-	90	DHP								-
300 – 350			R514 5 ¹⁵ /16 3160 4 ⁷ /16	I		60 – 70	RO 635	5 ⁷ /16	R1248	8	RX238	9 ¹ /2	0	\square
250 – 300	AX1568 2 ¹⁵ /16	D1025 57/10	R514 5 ¹⁵ /16		1	50 – 60	RO 635	5 ⁷ /16	R0 635	9 ¹ /2	R1248	10	Р	
200 250	AV1500 0 ¹¹ /		D514 5154c			45 – 50	RX1207	6 ¹ /2	R0635	9 ¹ /2	R1248	10	Р	
200–250	HAIJOO J/16	R1037 5 ⁷ /16	3180 413/16	J			RX1207		RO 635	9 ¹ /2	RO 635	1	Q	0 il Bath
175–200	RX238 4 ⁷ /16	R1037 5 ⁷ /16	R1033 7 ¹ / ₂ 3180 4 ¹⁵ / ₁₆	К		35 – 40 30 – 35			RO 635 RO 635		R0 635 R0 635	1	Q Q	Ą
150–175	RX238 4 ⁷ /16	R1037 5 ⁷ /16	R1037 7 ¹ /2	K	0 il Bath	25 – 30			RX1207	1	R0 635	1	R	1
		AX1568 57/16	+	L			R01306		R01306	1	RX1207	1	S	1995559D
	R1248 47/16		AX1568 81/2	М]	171/2-20			R01306	1	RX1207	1	S]()
	RX1245 4 ⁷ /16		AX1568 8 ¹ /2	N		15–17 ¹ /2			R01306	1	R01306	1	T	Reccell
80 – 90	RO635 57/16	RX238 7	RX238 9 ¹ /2	0]	1 2 ¹ /2 –1 5			R01306		R01306	1	U	Flow
70 – 80	RO 635 5 ⁷ /16	R1248 8	RX238 9 ¹ /2	0		10–12 ¹ /2	1		R01306	1	R01306	1	V	

Note: 1. 3100 Series chain operates over roller chain cut tooth sprockets. 2. Fabricated steel sprockets are recommended.

Consult Rexnord
 Hub size letter – See page 79.

TABLE 2 (Cont'd.)DRIVE CHAIN SELECTION TABLES

Note: Rex[®] drive chain selections are displayed in the tables. To interchange Link-Belt[®] and Rex chain numbers see pages 34-35.

		HORSEPOWER or (SF) see page		F	Table 2	– (Cont'd.)	DESIG	HORSEPOWER For (SF) see pag			
RPM Driver Sprocket	DRIVE	ER SPROCKET – ARGEST KEYSEA	NO. OF TEETH		Type of Lubrication	RPM Driver Sprocket	DRIV	ER SPROCKET – ARGEST KEYSE	NO. OF TEETH		Type of Lubrication
Sprocket	9T	12T	15T	Hub Letter②		эргоскес	91	12T	151	Hub Letter ⁽²⁾	
					100	DHP	-	-	-		
300 – 350		3180 3 ¹¹ /16	R514 5 ¹⁵ /16 3180 4 ¹⁵ /16	I		50 – 60	RX1207 6 ¹ /2	R0635 9 ¹ /2	R1248 10	Р	\square
250 – 300		R1037 5 ⁷ /16	R1035 7 3180 4 ¹⁵ /16	J			RX1207 6 ¹ /2	R0635 9 ¹ /2	RX1245 10	Р	
200 – 250		R1037 57/16	R1035 7 ¹ / ₂ 3180 4 ¹⁵ / ₁₆	к	\square	40 – 45 35 – 40	RX1207 6 ¹ /2 R1035 9	R0 635 9 ¹ /2 R0 635 9 ¹ /2	R0 635 ① R0 635 ①	Q R	O il Bath
175 – 200		R1037 5 ⁷ /16	R1037 7 ¹ /2	K	(A	30 – 35	R01306 9	RX1207 ^①	R0635 ①	R	UIIDaui
150 – 175	RX238 4 ⁷ /16	R1037 5 ⁷ /16	R1037 8	L		25 – 30	R01306 9	RX1207 ^①	RX1207 ^①	S	<u>م</u>
125 – 150	R1248 4 ⁷ /16	RX238 7	R1037 8	М	0 il Bath	20 – 25	RO1306 9	R01306 ^①	RX1207 ^①	S	
100–125	RX1245 4 ⁷ /16	RX238 7	AX1568 8 ¹ /2	N		17 ¹ /2-20	R01306 9	R01306 ^①	RX1207 ^①	Т	
	R0635 5 ⁷ /16		RX238 9	Ν		15–17 ¹ /2	0	R01036 ^①	R01036 ^①	U	DReccell
	RO 635 5 ⁷ /16		RX238 9 ¹ /2	0		12 ¹ /2–15	0	R01036 ^①	R01036 ^①	U	THAT THE
		R1248 8	R238 9 ¹ /2	0		$10 - 12^{1/2}$	0	X1307 ^①	R01036 ①	W	38 83
60 – 70	RX1245 5 ⁷ /16	RX1245 8	R1248 10	Р		$7^{1/2} - 10$	0	0	X1307 ^①	Х	Flow
					125	DHP	1	1	1	-	
200 - 250		AX1568 5 ⁷ /16	D1007 0	L		45 – 50		R0 635 91/2	R0635 ①	Q	~
175 - 200			R1037 8 R1037 8	L		40 45		RX1207 ①	R0635 ①		
150 – 175 125 – 150			R1037 8 AX1568 7 ¹ /2	M	\sim	40 – 45 35 – 40		RX1207 ^① RX1207 ^①	R0635 ©	R R	
123 - 130 100 - 125			RX238 $9^{1}/_{2}$	0	(63)	33 - 40 30 - 35		RX1207 ^①	RX1207 ^①	S	
90 - 100			RX238 $9^{1}/_{2}$	0		25 - 30		R01306 ^①	RX1207 ^①	S	0 il Bath
80 - 90			RX238 9 ¹ /2	0	0 il Bath	20 - 25		R01306 ①	R01306 ^①	T	
70 - 80			R1248 10	P		$17^{1}/_{2}-20$		R01306 ^①	R01306 ^①	U	
60 – 70		R0635 9 ¹ /2	R1248 10	Р	1	15–17 ¹ /2		R01306 ^①	R01306 ^①	V	Flow
50 - 60		R0635 91/2	R0635 ①	Q		12 ¹ /2-15		0	R01306 ①	W	
					150	DHP					
175 – 200			R1037 8	М		45 – 50			R0635 ①	R	<u> </u>
150–175			AX1568 7 ¹ /2	N	1	40 – 45		· · ·	RX1207 ①	R	
125–150			RX238 91/2	0] //	35 – 40			RX1207 ①	S	
100-100			RX238 9 ¹ /2	0	(15)	30 – 35			RX1207 ①	S	K State
90 – 100			R1248 10	Р	K State	25 – 30		R01306 ①	R01306 ①	Т	0 il Bath
80 – 90			R1248 10	Р	0 il Bath	20 – 25		R01306 ①	R01306 ①	U	
70 – 80			RX1245 10	Р		17 ¹ /2-20		0	R01306 ①	V	
60 – 70			R0635 ①	Q		15–17 ¹ /2		0	R01306 ①	W	Flow
50 – 60			R0635 ①	Q		12 ¹ /2-15		0	R01306 ①	Х	

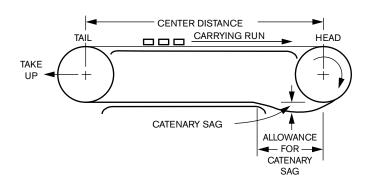
Note: 1. 3100 Series chain operates over roller chain cut tooth sprockets. 2. Fabricated steel sprockets are recommended.

① C onsult Rexnord
 ② Hub size letter – See page 79.

CONVEYOR CHAIN SELECTION PROCEDURES

Conveyor Classes

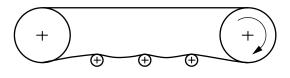
A second consideration closely related to the type of conveyor is the conveyor class. Six conveyor classes have been established on the basis of friction factors involved with the movement of the chain (sliding or rolling) and the movement of the material (sliding or carried). These six classes are described in terms of chain and material movement in the following table:

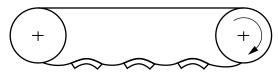

Conveyor Classes			
Class	Chain	Material	
1	Sliding, with flights	Sliding	
1A	Sliding, without flights	Sliding	
2	Rolling	Sliding	
3	Sliding	Carried	
4	Rolling	Carried	
4A	Supplemental Roller	Carried	

Basic Conveyor Arrangements

There are several basic conveyor arrangements. The recommended arrangement (see illustration) is with the drive at the head end and with the carrying and return runs well supported. Note the catenary sag in the return run at the head end. In general, the catenary sag should be at least equal to 3% of the span over which the chain is hanging. The illustrated arrangement offers two advantages:

- The catenary force tends to keep the chain engaged on the drive sprocket.
- Wear at the chain joints is minimal because the return run is under minimum tension and flexture at the chain joints is reduced by the well-supported return line.

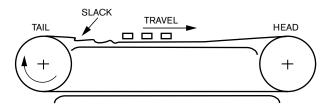

If a take-up is used to adjust the center distance and maintain the correct catenary sag, be extremely cautious not to impose excessive loads on the chain.


Other Arrangements

Other methods of supporting the return run are shown in the following illustrations.

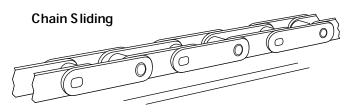
These methods of support will result in faster chain wear because of the additional flexure at the joints in the return line and the higher pressure between the chain and the return support because of the small area of support.

Return Strand Supported by Rollers

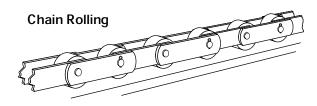


Return Strand Supported by Shoes

Conveyors sometimes are driven from the tail end as shown in the following illustration.


This arrangement is not recommended for two main reasons:

- Chain wear at the joints is greater because chain is flexing under load at both the head and tail sprockets.
- Excess chain tends to accumulate on the carrying run just after the tail sprocket and the resulting wedging action can cause the chain to jump the sprocket.

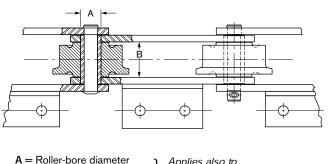


Method of Chain Travel

Another basic consideration is whether the chain will slide or roll. In deciding on the method of chain travel, the following points should be evaluated:

- Simple in construction, fewer moving parts and usually the lowest in cost for a given load.
- Most effective in "dirty" applications.
- Greater horsepower required.

- Smoother operation, less pulsation.
- Lower friction which permits longer centers, smaller motors, and lower operating costs.
- Not suited to "dirty" applications, foreign matter jams rollers.
- Less horsepower required.


Conveyor Pulsation

Another consideration is the amount of pulsation that can be tolerated in the conveyor. This will vary from one installation to another and the permissible amount is a matter of judgement. When pulsation must be minimized, consider the possible causes and remedies listed in the following table:

Possible Cause	Remedy
Excessive friction	Clean and lubricate moving parts.
Conveyor too long	Use shorter conveyor sections.
Conveyor speed too low (10 fpm or less)	Increase conveyor speed, or use non-metallic- bushed chain.
Velocity fluctuation caused by chordal action	Use drive sprocket with 12 or more teeth, or – Use compensating sprocket. (Consult your Rexnord representative.)

Carrying Loads of Rollers

A basic consideration on conveyors using chain with rollers is the load imposed on the chain. This load includes the weight of the slats or flights, and the weight of the material being carried. This load must be limited so that the pressure of the bushing on the roller is kept within permissible limits.

 A = Roller-bore diameter
 Applies also to outboard rollers.

 B = Roller hub length
 outboard rollers.

 Roller-bearing area = A x B
 The roller carrying pressure, per roller, is distributed over the roller-bearing area.

The table below lists allowable bearing pressures between bushings and roller. Note the method of determining the roller bearing area. The listed bearing pressures are for "ideal conditions", i.e. slow speeds in non-gritty service with lubricated bearings. As any of these conditions become more severe, the allowable pressures must be reduced accordingly.

The allowable working bearing pressures, in pounds per square inch between rollers and bushings, are approximately as follows:

Roller and Bushing Materials in Contact	Allowable Bearing Pressure P. S. I.
Casehardened steel against casehardened steel	1400
Casehardened steel against white iron	1400
Casehardened steel against untreated steel	1200
Casehardened steel against cast iron	1000 ①
Casehardened steel against malleable iron	1000
Casehardened steel against bronze	400
Gray iron against malleable iron	800
Malleable iron against malleable iron	800
Gray iron against bronze	800
Non-metallic against carburized steel or heat treated stainless steel (LF bushed rollers)	100

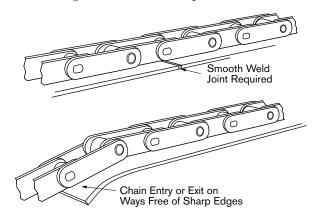
^① Applies also to chill iron.

CONVEYOR CHAIN SELECTION PROCEDURES – (Cont'd.)

Wear Strips and Ways

Generally, it is desirable that the chain wear slower than the wear strips or liner since it is the more critical and expensive part of the conveyor components. Therefore, the most compatible wear strip should be considered after the proper chain has been selected. Conveyor may wear for chains rolling is not a critical consideration but cold finished steel is used for best operation.

The subject of wear is extremely complicated and influenced by many factors. It is impossible to predict with accuracy the wear life of various chain - liner combinations. This is due to the effect of many variable and uncontrollable factors such as abrasion, corrosion, lubrication, load, speed, and break-in period. Thus, prior experience of a successful chain - liner combination for a specific application is the best guide to predict performance.


For new installations, where no previous experience can be applied as a guide, the chain should be slightly harder than a metal liner to protect it and insure that the liner wears first. The material should be at least comparable to the chain in surface finish or smoother.

Non-metallic materials such as, wood and plastic, are occasionally used as liner materials. These may result in wear strip economy, but should not be used where severe impacting loads exist or under extremely dirty conditions.

If wear is a problem, neglecting the effect of corrosion, experience has shown that generally by increasing the hardness of either the chain or the metallic wear strip in an abrasive environment should decrease the wear on both. Lubrication, even if only water will reduce wear.

Some general comments to insure proper installation of liners in the conveyor and things to do before start-up are:

- 1. See that the joints on the liners and frame are smooth so that no sharp edges protrude.
- 2. Take reasonable care in eliminating welding slag, weld spatter, metal filings and/or mill scale from the conveyor.
- Break in chain and liner by operating the conveyor 3. without load, and with plenty of lubricant, for a short period of time (generally 8-24 hours) or until the mating wear surfaces are polished smooth.

Note: The above comments are guidelines that normally will increase or improve chain liner compatibility

News	Durd war Ou	1-@ 0	Mechanical Properties			
Name	Producer Coo	Producer Code [®] Condition		Yield 1000 PSI	Tensile 1000 PSI	
SSS-321 SSS-360 SSS-400 Sheffield AR	ARM ARM ARM ARM	Q&T Q&T Q&T HR	321 360 400 225		- - - -	
AR-No. 235	В	HR	(235)	70	100	
Abrasion Resisting, Med. Hard. Abrasion Resisting, Full Hard.	IN IN	HR HR	235 270			
Jalloy AR-280 Jalloy AR-320 Jalloy AR-360 Jalloy AR-400 Jalloy S-340 Jalloy S (AR)	Л. Л. Л. Л. Л. Л.	Q & T Q & T Q & T Q & T Q & T HR	260 300 340 400 320 (225)	110 135 160 184 149 90	117 142 166 190 157 104	
T-1-A-360	L	Q&T	360	(145)	(180)	
XAR-15 XAR-30	N N	Q & T Q & T	360 360	165 165	180 180	
USS-AR	US	HR	(235)	-	100	
T-1 T-1-A T-1-A-321 T-1-B-321 T-1-321 T-1-360	US/L US/L US/L US/L US/L US/L	0&T 0&T 0&T 0&T 0&T 0&T 0&T	321 321 321 321 321 321 321 360	(100) (100) (137) (137) (141) (145)	(115) (115) (171) (171) (175) (180)	
Astralloy	V	N	440	(141)	(228)	

^① Presented as a guide only. If additional information is required, contact the designated steel company.
 ^② Producer Code: ARM = Armco Steel Corp.; B = Bethlehem Steel Corp.; IN = Inland Steel Co.; JL = Jones & Laughlin Steel Corp.; L = Lukens Steel Co.;

N = National Steel Corp.; U = United States Steel Corp.; V = Vulcan Steel Corp.
 N = National Steel Corp.; US = United States Steel Corp.; V = Vulcan Steel Corp.
 Note: Q & T = quenched and tempered; HR = hot rolled; N = normalized. Typical values are enclosed in parentheses. Mechanical properties are those of sheet or hot rolled plate up to ¹/₂" thick and are minimums unless typical is indicated by parentheses.

This procedure is intended to serve primarily as a guide for selecting a general type, or class, of chain when a new conveyor is designed. When following the step-by-step instruction outlined, the user may find that more than one type of chain will fit the particular conveyor requirement. In such a case the final selection of the chain may be affected by such factors as allowable sprocket diameters, space limitations for chain, chain pitch, and many other environmental and design factors peculiar to the particular conveyor being designed. Consult your Rexnord representative for assistance in selecting the best chain when a choice of more than one class is indicated.

Parts of this section will prove useful in determining whether the chain on existing installations is the most economical choice, and will also serve as a guide to upgrading existing installations where service life is not satisfactory.

Procedure

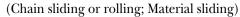
There are six basic steps in selecting the proper type of chain for a conveyor installation.

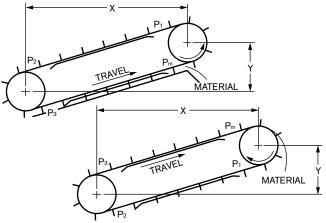
- 1. Determine the class of conveyor.
- 2. Estimate the total chain pull.
- 3. Determine the design working load.
- 4. Make a tentative chain selection.
- 5. Make tentative selection of attachment links.
- 6. Verify chain selection and re-check design working load.

Step 1. Determine the Class of Conveyor

Check the sections on Conveyor Types, Conveyor Classes, and Method of Chain Travel in relation to your conveying problem.

Make a tentative selection of a conveyor class required from the table on page 119.

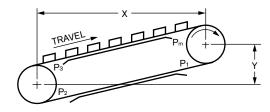

Step 2. Estimate the Total Chain Pull (Pm).


Use the formula which applies to the conveyor class tentatively selected and calculate total chain pull (Pm) which is total conveyor chain pull.

For conveyors that are partly horizontal and partly inclined, calculate the chain pull for each section, and add to obtain total chain pull.

Note: Calculations assume properly adjusted takeup equipment. If take-up force is adjusted to exceed the calculated value (P₂ + P₃), excessive chain loading may result.

Class 1, 1A and 2 Conveyors



Formulas for Calculating Total Chain Pull (Pm)

Horizontal:
$$\left(\frac{Y}{X} \text{ is less than } f_1\right)$$

 $P_m = X \left(2f_1W + f_2M + \frac{h^2}{c}\right) + MY$
Inclined: $\left(\frac{Y}{X} \text{ is greater than } f_1\right)$
 $P_m = X \left(f_1W + f_2M + \frac{h^2}{c}\right) + Y (W + M)$

Class 3, 4 and 4A Conveyors

(Chain sliding, rolling or in tension; Material carried)

Formulas for Calculating Total Chain Pull (Pm)

Horizontal:
$$\left(\frac{Y}{X} \text{ is less than } f_1\right)$$

 $P_m = f_1 X (2W + M) + MY + \frac{h^2}{c} X$
Inclined: $\left(\frac{Y}{X} \text{ is greater than } f_1\right)$
 $P_m = (M + W) (f_1 X + Y) + \frac{h^2}{c} X$

Formulas for Calculating Horsepower (HP)

Horizontal: Inclined:
HP =
$$\frac{1.15 \text{ (S)} (P_{\text{m}})}{33,000}$$
 HP = $\frac{1.15 \text{ (S)} (P_{\text{m}} - P_{1})}{33,000}$
P₁ = W (Y - f₁X)
P₂ = P₃ = 0

Note: Symbol identification given on page 152.

CONVEYOR CHAIN SELECTION PROCEDURES – (Cont'd.)

Symbols

f1 = Coefficient of Friction – chain sliding or rolling on runway. See next column for specific value of the coefficient.

If chain is supported by flights, etc., f1 should be coefficient for flights sliding on conveyor ways.

- **f**² = Coefficient of Friction material sliding on trough. (See Table in next column).
- **M** = Wt. of material handled per foot of conveyor (lb./ft.)

$$M = (\underline{TPH})(33.3)$$

$$M = (\underline{CFH}) (\underline{Mat'l. Density in LB/FT^3})$$

$$60(S)$$

W = Weight of moving conveyor parts – chains, flights, slats, etc., per foot of chain (lbs/ft). Depending on the method of chain travel, use the following factors for estimating approximate chain weight (lbs/ft) if actual chain weight is unknown.

Material or chain sliding – .0015 x Total weight of material on conveyor at any time (lbs.). (Classes 1, 1A, 2 or 3) Material carried and Chain rolling – .0005 x Total weight of material on conveyor at any time (lbs.). (Classes 4 and 4A)

For example: If a Class 4 Conveyor is used and the total material weight is 40,000 pounds, then 40,000 x .0005 = 20.0

Use 20.0 Lbs/Ft. as an estimated chain weight for "W" in the above equation. Add the estimated Weight/Ft. on the flights or slats that will be used.

- h = Height of material rubbing against side of conveyor trough (inches).
- **c** = Trough side friction constant (see Table in next column).

 $\mathbf{P}_{\mathbf{m}}$ = Total Maximum Chain pull (lbs)

P1)

P2 = **Chain pull at point indicated (lbs)**

P₃

HP = Required horsepower at headshaft

S = Conveyor Speed (ft/min)

TPH = Capacity in Tons per Hour = MS

CFH = Capacity in cubic feet per hour = TPH x 2000

(Mat'l. Density in lb/ft³)

X = Horizontal center distance (ft.)

 \mathbf{Y} = Vertical rise (ft.)

Chain Friction Factors (f1)

Chain Sliding

Chain Sliding on Steel Track – unlubricated35
Chain Sliding on Steel Track – lubricated
Chain Sliding on Hard Wood
Chain Sliding on Non-Metallic Wear Strips:
Chain Sliding on Ultra-High Molecular
Weight Polyethylene154

Chain Rolling

$$\mathbf{f}_1 = \mathrm{fr} \, \frac{\mathrm{da}}{\mathrm{dr}}$$

Where: da = axle diameter (inches) (usually bushing O.D.) dr = roller outside diameter (inches)

(Fr) For Metal Rollers				
Cast	Rollers	Steel Rollers		
Dry	.5	Dry	.4	
Lubricated	ed .4 Lubricated .3			

For LF (Low Friction material) Bushed Rollers, fr = .25

Material Friction Factors

Materials	Friction Factor Mat'l Sliding on Steel Trough (f2)	Trough Side Friction Fadctor (c)
Aluminum	.40	27
Ashes, Coal, Dry	.50	36
Ashed, Coal, Wet	.60	55
Bagasse	.40	200
Cement, Portland	.65	12
Cement Clinker	.70	12
Coal, Anthracite, Sized	.40	25
Coal, Anthracite, Run of Mine	.45	20
Coal, Bituminous, Sized	.50	21
Coal, Bituminous, Run of Mine	.55	20
Coke, Mixed	.55	42
Coke, Breeze	.65	36
Grains	.40	23
Gravel, Dry	.45	12
Gravel, Run of Bank	.60	11
Ice, Crushed	.15	34
Lime, Pebble	.50	28
Sand, Dry	.60	7
Sand, Damp	.85	6
Stone, Screened	.60	9
Wood Chips, Pulp Logs	.40	48

DESIGN AND SELECTION

Step 3. Determine the Design Working Load

The determination of chain pull (Pm) is for static conditions and does not include consideration of the following dynamic conditions:

- a. Loading fluctuations that may exceed the static load condition. These fluctuations are provided for by the Service Factor. (See table below.)
- b. The conveyor chain speed and the number of teeth in the sprockets used. These items are provided for by the Speed Factor (Fs). (See table below.)

Calculate the Design Working load by modifying $\mathbf{P}_{\mathbf{M}}$ as follows:

For single strand conveyor:

Design Working Load = Pm x Service Factor x Speed Factor

For multiple strand conveyor:

Design Working Load = $P_m x$ Service Factor x Speed Factor x ____ 1.2

No. of Strands

The multiplier (1.2) is used to provide for possible overloads in one of the strands caused by unequal load sharing distribution.

Speed Factors (Fs)

No. of	Ę	50	1	00	1	50	2	00	3	00	4	100
Teeth on Sprocket	Cast Chain	Engineered and Welded Steel Chain		Engineered and Welded Steel Chain	Cast Chain	Engineered and Welded Steel Chain		Engineered and Welded Steel Chain	Cast Chain	Engineered and Welded Steel Chain		Engineered and Welded Steel Chain
6	1.6	1.4	2.3	2.0	2.3	2.9	5.0	4.4	-	-	-	-
7	1.3	1.1	1.6	1.4	2.0	1.8	2.6	2.3	4.5	4.0	-	-
8	1.2	1.0	1.4	1.3	1.7	1.5	2.0	1.8	2.9	2.5	4.2	3.6
9	1.1	1.0	1.3	1.2	1.6	1.4	1.8	1.6	2.3	2.0	2.9	2.6
10	1.0	0.9	1.3	1.1	1.4	1.2	1.6	1.4	1.9	1.7	2.3	2.0
11	1.0	0.9	1.2	1.0	1.3	1.2	1.5	1.3	1.7	1.5	2.1	1.8
12	1.0	0.9	1.1	1.0	1.3	1.1	1.4	1.2	1.6	1.4	1.9	1.6
14	1.0	0.8	1.1	0.9	1.2	1.0	1.3	1.1	1.5	1.3	1.7	1.4
16	0.9	0.8	1.0	0.9	1.1	1.0	1.2	1.0	1.4	1.2	1.5	1.3
18	0.9	0.8	1.0	0.9	1.0	0.9	1.2	1.0	1.3	1.1	1.5	1.3
20	0.9	0.8	1.0	0.9	1.0	0.9	1.1	1.0	1.3	1.1	1.5	1.2
24	0.9	0.8	0.9	0.8	1.0	0.9	1.1	0.9	1.2	1.0	1.3	1.2

Note: If sprocket size has not yet been determined, use a speed factor for a 12-tooth sprocket. Refer to sprocket selection beginning on page 75.

Determination of Speed Factor for Traction Wheels

- 1. Determine effective pitch diameter (PDeff): (PDeff) = Traction wheel O.D. + barrel O.D. (chain)
- 2. Compare (PDeff) to pitch diameters of standard engineering sprockets. If (PDeff) falls between two standard pitch diameters, go to the lower value.
- 3. The standard pitch diameter chosen from No. 2 above will give number of teeth.
- 4. Knowing number of teeth and chain speed, speed factor (Fs) can be determined.

	Operating C	Daily Operated Period		
Type of Load	Start Stop Frequency Under Load	% Load Added At a Time	8-10 Hrs.	24 Hrs.
Uniform	Less Than 5/Day	Less Than 5%	1.0	1.2
Moderate Peaks	5/Day to 2/Hr.	5-20%	1.2	1.4
High Peaks	2/Hr. to 10/Hr.	20% to 40%	1.5	1.8
	Operating	Conditions	Service	Factors
	Up to 200)°F (93°C)	1.	.0
Temperature	Temperature 200°F to 350°F (1.1	
	350°F to 500°F (1.	.2	
	Above 500	°F (260°C)	Contact	Rexnord

 $^{\textcircled{0}}$ Reversing under load can be damaging and requires special consideration. Consult Rexnord for selection assistance.

The "Start-Stop" and "% loaded" parameters are intended to guide you in classifying the severity of loading for your conveyor. If these two parameters fall into different categories (ex. start-stop less than 5/Day, % loaded at a time 5-20%) use the more severe classification (moderate).

DESIGN AND SELECTION

CONVEYOR CHAIN SELECTION PROCEDURES – (Cont'd.)

Step 4. Make Tentative Chain Selection

To aid in making the selection, consider the following:

- a. The wear life and relative cost of each type.
- b. Short conveyor centers and high chain speeds produce rapid joint wear and chain elongation. These conditions suggest a chain with a high (A or B) wear rating.
- c. Heavy loads produce rapid sliding and rolling wear. These conditions suggest a chain with a high (A or B) sliding or rolling wear rating.
- d. Conveyors operating in highly abrasive surroundings require hard bearing surfaces. This condition would suggest a steel chain.
- e. Mildly abrasive or moderately corrosive conditions may indicate that a cast chain is the economical choice.
- f. Corrosive atmospheres reduce the fatigue strength of component parts. In this case, chain with armor cased pins are recommended.
- g. The chain pitch may be dictated by the required spacing of attachment links. A longer pitch is more economical while a shorter pitch requires less room for sprockets. In many cases a 4" to 6" pitch chain is considered a good compromise.
- h. The selection procedure outlined is applicable only if temperatures of the chain will remain within -40°F and +350°F. Special lubricants may be needed above 250°F. If these temperature limits will be exceeded, consult your Rexnord representative.

Additional factors such as sprocket availability and price, chain delivery lead time and chain price should also be considered in making the final choice.

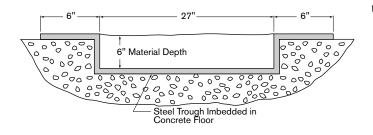
In making the final selection reliability should be a primary consideration. Cast chains, in general, do a good job in sliding applications and have excellent corrosion resistance. However, in critical applications where overloads may be encountered, Engineered Steel and Welded Steel chains will usually provide longer and more dependable service. It is recommended, therefore, that the final selection be made from the listings of Engineered Steel and Welded Steel Chains. Refer to the detail listings for the type of chain selected and select a specific chain that has a working load at least equal to the design working load and meets the pitch and space requirements.

REXNORD DOES NOT RECOMMEND CAST, CAST COMBINATION NOR WELDED STEEL CHAINS FOR ELEVATOR SERVICE.

Step 5. Make Tentative Selection of Attachment Links

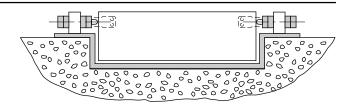
Refer to the section on attachments. On the basis of the information here and on the basis of the chain selected, tentatively select the desired attachment links.

Step 6. Verify Chain Selection and Re-Check Design Working Load

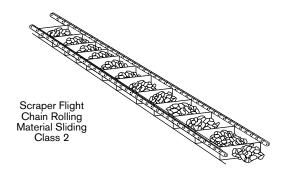

Recalculate total chain pull (Pm) and design working load using the exact chain and attachment weight as given in the listings to verify that the selected chain will meet the requirements.

Selection Procedure for Double Flex Chains

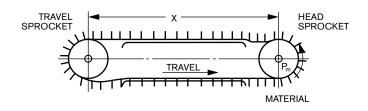
This procedure is the same as that for standard chains except that the "Chain Pull" as determined must be modified. The modification is necessary because the chain is flexing around curves and additional tension is developed because of the friction between the **sides** of the chain and curves. The chain pull must be calculated on a **cumulative** basis, with the "Turn Factor" for each curve taken into account. Consult Rexnord for assistance in applying the proper "Turn Factor" for your conveyor.


Conveyor Chain Selection

A horizontal scraper flight conveyor has been tentatively designed to handle Bituminous coals, and will feed an incinerator from a coal storage hopper. The coal is to be conveyed in an existing trough which is approximately 100 feet long and has a cross section as shown in the sketch below.



Conveyor Data


Material Handled:	Bituminous Coal (¹ /2" maximum lump size)
Material Density:	50 L bs. per cubic foot
Conveyor Centers:	100 Feet
Conveyor Capacity:	170 Tons per hour
Conveyor Speed:	100 Feet per minute

The unit becomes a scraper flight conveyor, similar to that indicated as a basic type of conveyor.

$$\mathbf{P_m} = X \left(2f_1W + f_2M + \frac{h^2}{c}\right) + MY$$

Where:

- **P**_m = Maximum chain pull (Lbs.)
- **X** = Conveyor centers (100 Ft.)
- **f**1 = Coefficient of friction chain rolling on runway
- $\mathbf{f_1} = \operatorname{fr} \frac{\mathbf{d_a}}{\mathbf{dr}}$ (See Table, page 123)
- f1 = 0.20 (This factor will range from 0.10 to 0.20, depending upon the chain roller-bushing proportions. Since the chain pull is only being estimated at this point, use the highest range 0.20 in the first calculation.)
- **M** = Weight of material handled per foot of conveyor

$$\mathbf{M} = \frac{\text{TPH x 33.3}}{\text{S}} = \frac{170 \text{ x 33.3}}{100} = 56.6 \text{ Lbs./Ft.}$$

- **W** = Weight per foot of moving conveyor parts
- **S** = Conveyor speed (feet/minute)

Other Considerations

- Approximately 100 steel plates (¹/4" x 10" x 27"; Weight 10 Lbs.) are left over from another project, complete with attachment wings. It is desired to use these as flights if possible. Attachment wings are available to suit chain.
- 2. No space restrictions.
- 3. Conveyor to operate 16 hours per day. 5 days per week.
- 4. Drive will be selected to suit conveyor.

Select Suitable Chain

Step 1. Determine Conveyor Class

In the basic considerations section of this procedure, it was pointed out that a conveyor using a chain that rolled would result in smoother operation. Since a rolling chain also has less friction, smaller drive units could be used, at lower operating costs. Therefore, tentatively pick a chain with rollers to run on the existing trough. Also tentatively figure on using the available 10" x 27" steel flights and attachment wings. The basic conveyor cross section might become a two-chain conveyor with scraper flights connected between the chains as shown in the following sketch.

CONVEYOR CHAIN SELECTION PROCEDURES – (Cont'd.)

Since the weight of the chain and attachment links has not yet been determined, use the empirical factor given on page 123 to establish chain weight.

- W = .0015 x 56.6 Lbs./Ft. x 100 Ft. = 8.49 Lbs./Ft.
 Add to this the weight of the flights.
 (There are approximately 100 flights available; assume a flight spacing of every 2 feet)
 10 Lbs./ Flight x 1 Flight/2 Ft. = 5 Lbs./Ft.
- **W** = 8.49 Lbs./Ft. + 5 Lbs./Ft. = 13.49 Lbs./Ft.
- f_2 = Coefficient of friction of material
- $f_2 = 0.50$ (Material friction factor table, page 123)
- **h** = Height of material (see sketch of trough)
- **h** = 6 inches
- **c** = Trough side friction factor
- **c** = 21 (Material friction factor table, page 123)

y = Vertical rise = 0 (Horizontal Conveyor)

Substitute Values in Formula:

$$\mathbf{P_m} = X \ (2f_1W + f_2M + \frac{h_2}{c}) + MY$$

= 100 [2 (.20) (13.49) + .50 (56.6) + $\frac{6^2}{21}$] + 56.6 x 0
= 100 (5.4 + 28.3 + 1.7)

P_m = 3540 Lbs.

Step 3. Determine Design Working Load

Design W.L. = Pm x Service Factor x
Speed Factor x
$$\frac{1.2}{\text{No. of Strands}}$$

= 3540 x 1.2 x 1.0 x $\frac{1.2}{2}$
= 2545 Lbs.

The Service Factor was picked from the table on page 153 for uniform loading since the conveyor is being fed from a hopper. A factor of 1.2 was selected because the conveyor will be in operation for more than 10 hours per day.

The speed factor was picked for a 12 tooth sprocket, although final sprocket selection has not been made. As indicated in the drive chain selection section (pages 94-95), a 12 tooth sprocket is a good first choice.

Step 4. Make Tentative Chain Selection

Refer to the chain selection chart and note that an engineered steel roller type chain is recommended for a Class 2 Conveyor. Refer to pages 10-15 of the chain listing section and note that these chains all have rollers. For the conveyor arrangement tentatively selected, a Style "R" chain, whose rollers are larger than the sidebars, should be used. As indicated in the selection procedure, Step 4-g. (Page 125), a 4- to 6-inch pitch chain is good first choice. Also, from the calculation of Design Working Load, a chain having a working load rating of 2548 pounds or greater will be required.

Checking the chain listings, you will note a number of Style "R" chains in the desired pitch range. SR196 would be selected as the chain that most closely matches the desired working load. Chains such as 2188 and 1604 have working loads substantially higher and would not be economical choices. SR196 would be the tentative selection.

Step 5. Make Tentative Selection of Attachment Links

From the basic conveyor arrangement decided upon, an attachment lug which projects on one side of the chain only is required. Also, it is desired to select an attachment link to which the available flight wings can be adapted, if possible. This suggests a singleattachment lug such as the "A" attachment. The A1 (single hole) attachment is available for the SR196 Chain. Make this the tentative selection.

Step 6. Verify Chain Selection & Recheck Design Working Load

The exact chain and attachment link weight/ft. can now be used to calculate the Design Working Load. Also, the chain roller and bushing diameters can be used to determine the chain friction factor (f1).

Chain Weight

SR196 Plain Chain	= 5.0 Lbs./Ft.
SR196 A1 Attachment Link	= 6.6 Lbs./Ft.

The weight per foot for the attachment link is based on a link interspersed every pitch. For the conveyor arrangement to be used, an attachment link will be required every 2 feet, or every 4th pitch (6 inch pitch chain).

3 plain links at 5.0 Lbs./Ft.	= 15.0 Lbs.
1 Attachment link at 6.6 Lbs./Ft.	= 6.6 Lbs.
	21.6 Lbs.
$21.6 \div 4 = 5.4$ Lbs./Ft.	
SR196 A1 every 4th link	= 5.4 Lbs./Ft.
2 strands of chain x 5.4 Lbs./Ft.	= 10.8 Lbs./Ft
Flight Weight	= 5.0 Lbs./Ft.
	15011 (5

15.8 Lbs./Ft.

15.8 Lbs./Ft. = W = Total weight of moving conveyor parts.

Chain Friction Factors

 $f_1 = fr \quad \underline{d_a}$ d, $f_r = 0.4$ (from table, page 154 for steel roller) d_a = Bushing diameter (5/8" from chain listing, page 11) $d_r =$ Roller O.D. (2" from chain listing, page 11) $\left[\frac{0.4 \ (5/8)}{9}\right]$ $f_1 =$ $f_1 = 0.125$ Use the final values of chain weight (W) and chain factor (f_1) in the chain pull formula Use the same values for all other factors as in Step 2. $P_{\rm m} = X \left(2f_1W + f_2M + \underline{h^2}_c\right) + MY$ $= 100 \left[(2 \times .125 \times 15.8) + (.50 \times 56.6) + \frac{6^2}{21} \right] + (56.6 \times 0)$ = 100 [(3.95) + (28.3) + (1.7)] $P_m = 3395$ Lbs. total conveyor chain pull Design Working Load = $P_m x$ Service Factor x Speed Factor x 1.2 No. of Strands

Design W.L. = 3395 x 1.2 x 1.0 x $\frac{1.2}{9}$

= 2444 Lbs. chain pull per strand

Since the final design working load of 2444 pounds does not exceed the maximum recommended working load of 2600 as given in the chain specifications (pages 11), the SR196 chain selection is acceptable.

ELEVATOR CHAIN PULL CALCULATION PROCEDURE

Bucket Elevator Formulas

To Determine Chain Pull (P_m):

 $Pm = 0.5 P_t + MKD + Y (M + W)$

Knowing the chain pull, determine the design working load and select chain service and speed factors found on page 126.

To Determine Horsepower (HP):

HP = 1.15 (S) (MDK + MY)

Where: 33000

M = Weight of material handled per foot of elevator (lb./ft.)

M = Mat'l. Density (Lb./Ft.³) x Bucket Cap. (Ft.³)

Bucket Spacing (Ft.)

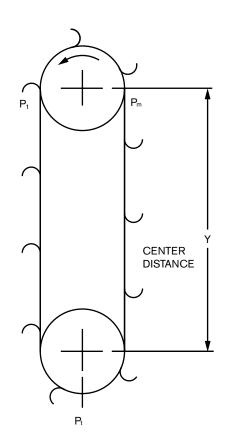
W = Weight of chain and buckets per foot of elevator (lbs./ft.)

$$W = \frac{\begin{pmatrix} \text{Attach. Spacing} \\ \text{in Pitches} - 1 \end{pmatrix} \times \begin{pmatrix} \text{Wt. of plain chain} \\ (\text{lbs./ft.}) \end{pmatrix} + \begin{pmatrix} \text{Wt. of attach. chain} \\ (\text{lbs./ft.}) \end{pmatrix}}{\text{attachment spacing in pitches}}$$

+ Wt. of a bucket (lbs.) bucket spacing (ft.)

 P_t = Take Up Force (Lbs.)

 $P_1 = 1/2 \text{ of } P_1 + WY$


- D = Footshaft sprocket pitch diameter (feet)
- K = digging factor (10 for centrifugal, 6 for continuous)

Y = Elevator center distance (feet)

S = Elevator speed (feet/minute)

TPH = Tons/Hour =
$$\frac{.75 \text{ (S) }(\text{M})}{33.3}$$

CFH = $\frac{\text{TPH x }(2000)}{}$

ID SFI FCT

APPLICATIONS BEYOND SCOPE OF CATALOG SELECTION PROCEDURES

Data Required for Selection

The selection procedures in this catalog were intended to cover the majority of conveyor, elevator and drive applications. However, some installations involve conditions or applications which require special consideration in the selection process. The items listed below will aid in obtaining selection assistance. The items on this page are basic considerations which are necessary, if known, to insure selection of components best suited to the application.

General Information

- 1. Answer Required by (date):____
- 2. Product: Chain Sprockets Other
- 3. Application:
 New Installation
 Replacement Component
- 4. Equipment OperatingTime ___ Hours/Day; ____ Days/Week

Drives

- 1. Horsepower: Maximum _____; Percent of operating time at or above 75% Maximum Horsepower______
- 2. RPM DriveR _____ DriveN _____ ; Ratio _____ Permissible Variation + _____
- 3. Center Distance _____
 - \Box Fixed \Box Adjustable Permissible Variation ± ____
- 4. Layout: Please provide sketch. Show Centers, DriveR, Direction of Rotation and Relation to Horizontal.

Conveyor and Elevator Components

- 1. Type:
 Elevator
 Bulk Material Conveyor
 Unit Handling Conveyor
- 2. Chain Speed: _____ Feet/Minute
- 3. Material Handled:

(a) If Bulk:

_

- Characteristics: □ Dry □ Wet □ Sticky
- Lump Size: _____ Inches (Maximum)
- Quantity: _____Tons/Hour;
- Cubic Feet/Hour
 Density: Lbs./Cubic Foot
- If material density is not known, refer to material properties table on pages 173 and 174.

(b) If Units:

- Spacing:
 Random
 Regular
- Weight: _____ Lbs. (each) _____ Lbs. (per foot of conveyor) Total weight on conveyor at one time: _____ Lbs. (Max.)
- 4. Loading (in Cubic Feet/Hour or Units/Hour):
 - Normal _____ Peak _____
 - Percent of Time at Peak _____
- 5. Layout: Sketch showing centers, inclines, distance between chains, special attachments.

General

- Desired Equipment Life: _____ Hours/Years
 Environment

 (a) Temperature: Surrounding _____ °F
 - Component _____ °F
 If Cycling, Time at Temperature _____
 - (b) Abrasion: Material ______ Abrasiveness _____
 - (Refer to tables on pages 143-144).
 - (c) Corrosion: Material _____ Corrosiveness _____
 - (d) Lubrication: Lubricant _____ How Applied _____

Conveyor and Elevator

- Sprockets (or Traction Wheels) No. of Teeth (or Outside Diameter):
- Head ______ Tail _____
- 2. Shaft Size: Head _____ Tail _____
- 3. Chain Attachments: Type _____ Spacing _____
- 4. Weight of Flights or Slats _____
- 5. Takeup Type:
 Screw
 Gravity Weight
- 6. Elevator Buckets: Style _____ Size _____ x _____ x _____

Drives

Shaft Diameters: DriveR _____ DriveN _____
 Application Description: ______

3. Peak Load Factor _____

Ratio of peak tension to mean tension while maximum horsepower is being transmitted.

POLYMERIC CHAINS AND ACCESSORIES – APPLICATION INFORMATION Materials

Standard Materials

Chain links are made from an acetal thermoplastic which which offers several advantages over steel and stainless steel chains. The coefficient of friction for acetal is lower than either steel chains, reducing the horsepower requirement for the conveyor and preventing product damage when the chain slides under products backed up at various points in the conveyor. Acetal chains also reduce noise in a conveying system.

Combined with a stainless steel pin, the chain will not rust and has good resistance to many chemicals.

Special Materials

For applications requiring special chain capabilities, a wide range of materials and processing treatments have been developed. Consult Rexnord for details. (See the listing below for frequently encountered requirements).

FDA/ USDA Compliance

Chain materials used are in compliance with FDA regulations and guidelines for use in direct food contact. Also, the chain materials have been found chemically acceptable for direct food contact with meat or poultry products by the Product Safety Branch of USDA. Also, the chain designs have been found acceptable for direct contact with meat or poultry products by the Equipment Branch of the Facilities, Equipment and Sanitation Division of USDA.

Environmental Factors

Chemical Resistance

Rex[®] polymeric chains, sprockets and idlers have good resistance to hydrocarbons, most neutral organic and inorganic materials, and to weak acids and bases in a pH range from 4 to 10.

To prolong chain life in the above situations, it is recommended to:

- 1. Avoid high temperatures of questionable liquids and/or solids. The closer to room temperature, the better.
- Clean the chain! Thorough and frequent cleanings can limit prolonged exposure to questionable liquids and/or solids, decreasing the damaging effects of chemical attack.

Temperature Range

The allowable temperature range for Rex polymeric chains is -40°F to +180°F.

Consult Rexnord Corp. for operation beyond these temperatures.

Abrasion Resistance

Care should be taken when operating Rex polymeric chains in abrasive environments. Of particular concern is abrasive particles embedded in wearstrips and sprockets. These particles, once embedded, can work like a file to wear away the chain.

Rex sprockets are manufactured from super tough urethane. This material was selected because it is harder than most other available non-metallic sprocket materials and resists particle embedding. UHMW sprockets are not recommended for any application where dirt or other abrasives are present.

Sprockets

Rex polymeric chains are designed specifically for applications where corrosion resistance is desired. The current line of polymeric sprockets compliments the product line by offering additional corrosion resistance components. There are, however, situations that require metallic sprockets.

If a decision is made to use steel or cast sprockets, it is imperative to carefully inspect the sprocket for any unusual burrs, ridges, or protrusions and remove them before they come in contact with the polymeric chain. Such abrasive components have the capability of severely reducing the expected service life of the chain.

Flammability

Rex polymeric material will burn and support combustion. Acetal thermoplastics will burn with a clear flame and little smoke. Care should be taken to keep chain and accessories away from heat sources. Do not weld around conveyors or machinery without taking care to protect polymeric materials.

Ultra-Violet (UV) Resistance

Exposure to ultra-violet light can degrade polymeric chain materials. UV stabilized materials are available for use in direct sunlight.

Wear Strips Metal Wear Strips

Metal wear strips are harder than non-metallics and, in addition, can be heat treated or work hardened to increase hardness. They are, therefore, suited for applications where abrasive particles are present either from the environment or from the products carried. Abrasive particles are less likely to imbed in metal wear strips.

For non-corrosive environments, plain carbon steel, cold finished, is recommended. For corrosive environments, use stainless steel, one quarter temper minimum (25Rc) cold finish.

POLYMERIC CHAINS AND ACCESSORIES – APPLICATION INFORMATION – (Cont'd)

Wear Strips - (Cont'd.)

Steel

Plain carbon, cold rolled steel is recommended. Surface finish should be 32-63 RMS. Use heat treatable grades where available and hardened to 25-30Rc. Surface lubricants used should have rust inhibitors added.

Stainless Steel

Cold rolled finish (32-63 RMS) is recommended. An austenitic grade offers the best corrosion resistance.

The softer annealed grades of austenitic stainless steel are **not recommended**. Interaction between the chain material and the soft stainless steel might develop. When this happens, the resulting wear debris consists almost entirely of finely divided stainless steel particles, nearly black in color, similar to molydisulfide or graphite. The wear of the stainless steel might be rapid while the thermoplastic chain by contrast exhibits only slight wear.

Therefore, one quarter temper minimum austenitic grade stainless is recommended. Martensitic stainless steels can also be use. They offer excellent wear resistance when heat treated to 25-35R_c, but they are not as corrosion resistant as austenitic.

Aluminum

Not recommended due to poor wear resistance.

Non-Metallic Wear Strips

Non-metallic wear strips have a lower coefficient of friction than metals. They are generally easier to install and remove and provide for quieter operation. Nylatron is the preferred material, especially for dry operation at high load or high speed conditions around corners. Ultra high molecular weight polyethylene is also recommended for all well lubricated applications and some dry applications.

Acetal

Not recommended for use with acetal chains. It is best not to run identical plastics together.

N ylatron

Nylatron (nylon with molydisulfide filler) is the preferred material for dry applications because of its low wear state and low friction. It is especially suited for dry operation on double flex chain corners.

Although nylatron is more stable in wet applications than most nylons, it will absorb moisture and expand. Therefore, room for expansion must be provided and fasteners must allow for movement.

Ultra High Molecular Weight Polyethylene (UHMWPE)

UHMW polyethylene (molecular weight of at least 1.0 million) is recommended for both dry and wet applications on straight runs. It is also recommended for all well lubricated corners and non-lubricated corners where chain load and speed are low. It is not recommended for dry operation on corners where the chain load or speed are high. It is also not recommended for operation in environments where particulate matter is present and can embed in the UHMW, subsequently wearing the chain.

UHMWP has a wear rate equivalent to nylon in non-lubricated applications. It is virtually unaffected by moisture and is more resistant to corrosive chemicals than nylon. It is not as rigid as cast nylon and may deflect when subjected to high loads from sideflexing chains.

Teflon

This material has perhaps the lowest coefficient of friction available in a plastic wear strip material. It is soft and tends to flow off the surface and is not practical as a wear strip material except in low load – low speed applications.

Lubricant Impregnated Wood

Suitable for dry applications where self-lubricating properties of the material are best utilized. Not recommended for abrasive conditions where particles may imbed in the surface and wear the chain.

Catenary Sag

Rex[®] polymeric chain conveyors should provide for proper amount of catenary sag to allow proper chain and sprocket interaction. Ample space should be provided for the catenary. If chain sag is excessive or increased due to wear, it should be adjusted to the proper amount of sag by removing links. If space does not permit catenary sag, consult Rexnord.

Rex polymeric chains should never be run tight. Attempting to operate the chain with too little catenary sag can result in excessively high chain tension, leading to rapid chain wear to chain breakage. For this reason, screw take-ups are not recommended.

POLYMERIC CHAINS AND ACCESSORIES APPLICATION INFORMATION - (Cont'd) General Chain Pull Calculations

CS

Overhead Conveyors

Chain pull = Moving Load + Lift Load^①

Where

, ma c	
MTW	= Moving Total Weight lbs: (Weight of all
	N348 Chain, Trolleys, Shackle Hangers,
	Carriers and Product Weight in the entire
	conveyor.)
f 1	= Friction Factor (see table).
	Select the Friction Factor indicated for
	your trolley wheel diameter.
	Note: A large number of vertical bends
	and horizontal turns will create slightly
	higher friction (consult Rexnord).
TR	= Total Rise: (this is the total of all vertical rises)
	Example: three four-foot rises,
	TR = 3 x 4 = 12 ft.
BW	= Product Weight lbs. (average weight
	product)
CS	= Carrier Spacing (feet)

Friction Factor f1

Operatin g	Ball Bearing Trolleys Wheel Diameter							
Conditions	2"	3"	4"					
O° to 180°F (clean conditions)	.025	.020	.018					

 $^{(\!)}$ The worst condition (uncompensated loaded inclines) should be used in determining LiftLoad.

Well **lubricated** anti-friction wheel turns and ball bearing trolley wheels are recommended; sliding corners are not recommended.

Rated Allowable Chain Pull

The maximum recommended chain pull/working load of N348 chain is **700 pounds**; if this chain pull is exceeded, additional drives must be used.

For more detailed information on chain pull calculations, refer to CEMA standard No. 601 – 1995 entitled "Overhead Trolley Chain Conveyors." It is available from Conveyor Equipment Manufacturers Association, 9384-D Forestwood Lane, Manassas,

VA 20110. POLYMERIC CHAINS AND ACCESSORIES – MAINTENANCE INFORMATION

Installation

- 1. When connecting or disconnecting chain:
 - Always lock out the equipment power switch before removing or installing chains.
 - Always use safety glasses to protect your eyes.
 - Support the chain to prevent uncontrolled movement of chain and parts.
 - Tools for assembly or disassembly should be in good condition and properly used.
 - Always sight the pin with the hole before driving it home.

2. The chains operate open end forward!

Generally, it is best to run offset chains with the open end leading. This arrangement provides the smoothest action during sprocket engagement and assures getting the longest service life out of the chain and sprockets.

When chains are operated in this way, the wear from joint articulation is restricted primarily to the bearing surface (pin or bar) which is best able to withstand wear. In addition, sprocket wear is minimized because the motion between the chain and sprocket teeth during engagement is reduced.

3. Any unusual burrs, ridges, or protrusions in the conveyor system that could cut into and destroy the chain, sprockets, or idlers must be removed.

Cleaning

In many applications rapid build-up of grease, dirt, grit, sand and spilled liquid can occur. This can result in:

- 1. Soiling and damage to the conveyed product.
- 2. Increased work demands for the chain and motor.
- 3. Accelerated sprocket tooth wear.
- 4. Conveyor pulsation and wear.
- 5. Excessive chain wear on the flight and in the joint areas.
- 6. Rapid wear of the wear strips.

Frequent cleaning of the chain and conveyor frame is advised. Such agents as steam, warm water, and soap are commonly used. Many times combined "cleaners/lubricants" are applied continuously. Strong caustic agents used with metal chains should not be used with plastic chains. Always rinse cleaning agents completely off of the chain and conveyor frame. When excessive amounts of liquids, broken glass or debris accumulate, cleaning will be required on a regular basis to remove these undesirable materials. It is advisable to have operating personnel keep brushes and cleaning solutions nearby to remove broken glass and excessive spillage.

CONNECTING AND DISCONNECTING CHAIN

Introduction

Chains are manufactured with connectors, either pins or rivets of various constructions depending upon the chain type, i.e., offset or straight sidebar, Roller Chain, Fabricated Steel Chain, Welded Steel Chain, Cast Chain, Combination Chain, etc. The particular connector link construction dictates the proper method and direction of connector insertion or removal from chain.

The connectors can have uniform diameters, multiple stepped diameters, locking flats, various head styles, riveted ends or various pinlocks (cotters, etc.).

A pin with either a flat on the head end, or a larger stepped diameter will not pass through the smaller cotter-side sidebar hole. Likewise, the round shank of a pin with locking flats on the cotter end will not pass through the slotted cotter-side sidebar hole.

Field Repair

When repairing chains in the field, the repair should be confined to replacement of complete links or sections. Replacement of individual components (bushings, rollers, etc.) is generally not recommended. Therefore, this connect-disconnect discussion has been limited to removal and replacement of connectors.

CAUTION: Rexnord does not recommend altering or rebuilding standard press-fit chains, or sub-assemblies especially the removal of press-fit components and their replacement with others. Such alterations destroys the integrity of the press-fits of the chain assembly.

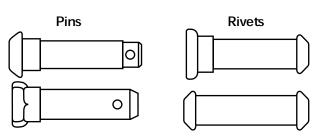


Figure 1 – Type I Connectors

Type I Connectors

The connector construction found in the majority of chains would be of the type shown in Fig. 1.

or insertion.

Head Identification

The head of a connector can usually be identified by a alpha-numeric code stamped on it, or the appropriate sidebar is designated head side.

Type I Connector Removal

Type I connectors are removed by driving on the end opposite the head and supporting the link as shown in Fig.

2. Refer to pages 137-138 for disassembly tools

When Connecting or

Disconnecting Chain

A Iways lockout equipment power switch before removing or installing

• A Iways USE SAFETY GLASSES to

W ear protective clothing, gloves and

S upport the chain to prevent uncontrolled movement of chain and parts.

ommended. Tools should be in good condition and properly used.

U se of pressina equipment is rec-

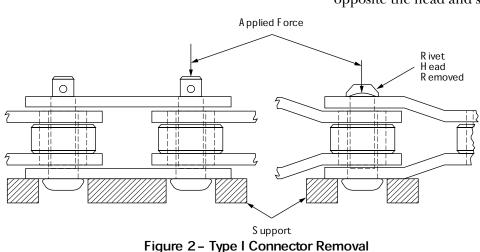
Do not attempt to connect or discon-

correct direction for pin/rivet removal

Rexnord

nect chain unless you know the chain construction, including the

chains


protect your eyes.

safety shoes

For Type I single diameter rivets, the method of removal suggested for Type II connectors may be preferred. (See next page).

Connection

The connector is inserted by driving on the head end of the connector and supporting the link similar to the manner shown in Fig. 2.

CONNECTING AND DISCONNECTING CHAIN – (Cont'd.)

Connection

For connection, one sidebar is pushed onto one of the ends of the connectors and the other sidebar is pushed onto the opposite ends of the connectors. Refer to pages 137-138 for assembly tools.

Pinlocks

For cast and roller chains, the pinlocks (cotters, etc.) should be removed before pin removal. Cast chains could be damaged from the pinlock if left in during pin removal. Roller chains normally use hardened pinlocks making cutting or shearing difficult. However, for most other chains, both ends of pinlocks should be cut flush (with chisel or equivalent) with outside diameter of pin to prevent pin collapse during pin removal.

Riveted Ends

For chains of riveted construction, the riveted end should be ground flush with the sidebar before connector removal.

Loose Chain

When disconnecting and connecting loose chain, the chain should always be solidly supported against the floor, or on a bench. When employing method of Fig. 2, enough space should be provided below the end (at least twice the sidebar thickness) to allow the connector end to pass through the sidebar.

TYPE II CONNECTORS

Connectors of Type II construction shown in (Fig. 3) are typically found in hollow rivet, draw bench, double flex and S-Series Chains.

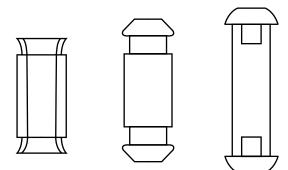
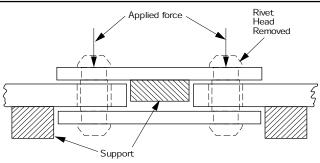



Figure 3 – Type II Connectors

Removal

Type II connectors are moved in the method shown in Fig. 4. They are removed by supporting the top sidebar and pushing the ends of the connectors free of the sidebar. An alternate method is to wedge or pry the sidebars free of the connectors

To Disconnect Chains on Sprockets

- 1. Decrease chain tension by loosening, take-ups, etc.
- 2. Restrain sprockets from rotating and secure chain on both sides of disassembly point.
- 3. Apply penetrating oil around connectors.
- Remove where chain wraps over the sprockets. Support against removal force with heavy bar or tubing held against opposite side of the chain and sprocket.
- 5. Grind riveted end (if present) of connector flush with the sidebar.
- 6. Remove pinlocks or cut ends flush with outside diameter of pin.
- 7. Use press equipment to remove connectors, e.g., hydraulic press or jack, or arbor press

IMPORTANT! SAFETY INSTRUCTIONS

- Follow safety guidelines on preceding Caution Tag.
- Don't heat or cut chain with torch unless absolutely necessary. Any links or pins heated by such a process should be replaced during reassembly.

To Connect Chains on Sprockets

- When connecting strand use sprocket for rigid support. Support against assembly force with heavy bar or tubing held against opposite side of chain and sprocket.
- 2. Grease or oil the connector before replacing it.
- 3. Check connectors to assure proper positioning of flats or cotter holes before assembly.
- 4. Use press equipment to insert connectors, e.g., hydraulic press or jack or arbor press.
- Check to see that assembled joint(s) flex freely. If not, a light blow exerted on opposite end of connector(s) should free joint(s).

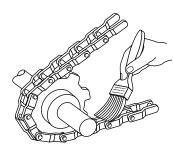
IMPORTANT! SAFETY INSTRUCTIONS

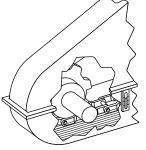
- Follow safety guidelines on preceding Caution Tag.
- Don't grind the circumference of the connector of
- the sidebar hole to ease insertion of the connector.
- Do not heat sidebars to ease pin insertion.

MAINTENANCE INFORMATION

DRIVE CHAINS

The following suggestions are practical methods of increasing chain and sprocket life. The more of them that are followed, the longer the chain and sprocket life will be.


Lubrication


Lubrication is essential for maximum chain and sprocket life. Drive chains can and should be lubricated.

Lubrication effectiveness will vary with the amount of lubricant used and frequency of application. Ideally, a lubricant film should constantly be maintained between working parts

Chain Operation

If possible, manually lubricate the chain once a week when the chain is not under load. It is important to get the lubrication between the pin and the bushing and between the roller and the bushing. The chain is under the least load after it exits from the driver sprocket. This area will contain a catenary sag and this is the area to which manual lubrication should be applied. Pour or brush on a copious amount of oil in a continuous manner. Allow the chain to travel two complete cycles

Manual Lubrication

0 il B ath Lubrication

Chains operating at relatively high speeds should be completely enclosed in an oil case. The lower strand of the chain should just dip into the oil when the chain is running. Maintain the proper oil level. Excess oil causes churning and heat.

Type of Lubricant

O il is recommended as a lubricant using the highest viscosity that will flow at the prevailing temperature:

Temperature (°F) Lubricant

Below 40	SAE	30
40-100	SAE	40
Above 100	SAE	50

Sprockets

Worn or improperly designed sprockets are one of the main causes for premature chain life or chain failure. Here are a few hints on how to get the most out of sprockets

New Sprockets

- 1. When receiving new sprockets check to see if the sprockets are in pitch by wrapping the chain around sprocket and coupling.
- 2. Make a "Painted Pattern" by holding a piece of wood behind the new sprocket tooth and spray paint the tooth outline onto the wood. As the sprocket wears, a check on what the original shape was and how much wear has taken place can be made by putting the painted pattern behind the tooth.

Tooth Wear

On single direction drives only one side of the tooth wears. Reverse the sprocket on the shaft and put the unworn tooth face to work.

Chain and Sprocket Interaction

Closely inspect the Chain and Sprocket interaction to insure a smooth and noiseless operation. The chain should easily enter and exit the sprocket without a hitch.

Chain Elongation

Wear on the pin outside diameter and bushing inside diameter causes chain elongation. Once the chain has elongated or worn past acceptable limits, jumping of sprocket teeth and/ or improper chainsprocket interaction can be expected. Typical allowable elongations are 3 to 5% of chain pitch for drive chains After the chain has been elongated or worn past acceptable limits, it should be replaced.

How to Dimensionally Identify Chain:

First check chain for any markings!

- 1. Determine if sidebars have straight or offset construction.
- 2. Measure chain pitch.
- 3. Measure pin diameter.
- 4. Measure roller diameter & width.
- 5. Measure sidebar thickness & height.
- 6. Measure bushing length.

FOR BEST RESULTS, CLEAN CHAIN AND SPROCKET PERIODICALLY.

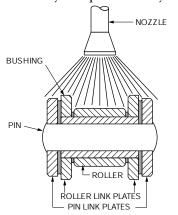
CONVEYOR CHAINS

Wherever possible, lubrication of chain is always recommended to assure maximum chain life and optimum conveyor operation. The reduction in friction and increase in wear life usually justifies the additional cost.

Under normal conditions, chains with roller are selected only when proper lubrication is possible.

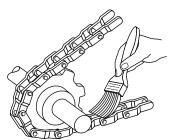
In some applications the presence of a lubricant cannot be tolerated, but it still may be possible to attain satisfactory service with sacrifice to chain and conveyor life.

The following are general guides:


Type of Lubricant

Oil is recommended as a lubricant. Use the same lubricants recommended for drive chains at the same temperature ranges.

Grease can be used if it is applied internally into the joint with lubrication fittings on rivets or bushings.


Method of Lubrication

Oil flow or brush type lubrication is adequate under relatively clean conditions, but they are ineffective with dirty conditions. "Flush" lubrication (flooding the chain) once per day is normally adequate in dirty environments.

When manually lubricating, the oil should be directed between adjacent outer and inner sidebars (for the joint) and between inner sidebar and roller face (for roller-bushing lubrication). **For best results, clean chain and sprocket periodically**.

The effectiveness of any lubrication method will

vary with the amount of lubricant used and the frequency of application. Ideally, a lubricant film should be maintained between working parts.

Chain and Sprocket Storage

Do not store in an "open" area where dust, dirt and water are present. **Sprockets**, especially the tooth face and the inside of the bore, should be painted with a heavy lubricant to prevent corrosion.

Most manufacturers pre-lubricate chain when it is shipped from the manufacturing plant. If you do not

intend to use the chain when you receive it and it will be stored for a period of time, the chain should be lubricated periodically. If possible, store chain in a fifty gallon drum or other container filled with "Used Drain Oil." This will provide excellent protection for the chain as well as good break-in lubrication for the chain when it is finally used. This pre-lubrication will allow the chain and sprockets to "break in" or "shine-up" properly. If a chain is installed into the application completely dry this will reduce its overall life.

If it is impossible to store in "lubricated" environment, then oil the chain after installation but before any load is applied. Run the chain for 24 hours without any load to allow for good break-in. It is also a good idea to lubricate drag chain conveyor ways with moly-disulfide so that a proper surface will develop between the chain ways and the chain.

Chain Installation

Do not grind the chain pins or the holes in the sidebar in order to assemble the chain. Chain reliability if based upon a good press fit of the pins into the sidebars. If you reduce that press fit you can reduce chain life. Lubricate the pin when installing it, this eases assembly.

Chains on Idle Equipment

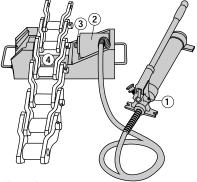
If the equipment is to be idle for any length of time, clean the chain and sprockets by brushing or swabbing if possible, or with a steam hose. Then cover the chain and sprockets with a light oil.

Chain Operation

If possible, manually lubricate the chain once a week when the chain is not under load. Try to flow the oil between the pin and bushing and between the roller and the bushing. Usually the chain is under the least load after it exits from the driver sprocket. This area should contain a catenary sag, and this is the area that manual lubrication should be applied. Flow or brush on a predetermined amount of oil in the shortest amount of time possible, but still allowing the chain to travel two complete cycles.

CHAIN ASSEMBLY/DISASSEMBLY TOOLS – DRIVEMASTER[®]

Assemble and disassemble Rex[®] and Link-Belt[®] Drive Chains quickly and safely with these portable tools. Keep the advantages of interference fit, thereby maintaining optimum chain fatigue life. The design of these tools will facilitate assembly or disassembly of catalog listed drive chains, through 7 inch pitch.


Features	Benefits
1. Easy-to-use	Reduces down-time. Eliminates cumbersome assembly/disassembly methods.
2. Maintains Press-Fits	No hammering or back-up required. Insures optimum chain fatigue life.

TO DISASSEMBLE CHAIN:

- 1. READ AND FOLLOW ALL PRE-CAUTIONS LISTED ON CHAIN TOOL.
- 2. Be sure to use the correct chain adapters for the chain being disassembled.
- Remove dust cover from cylinder and connect pump hose to cylinder by finger tightening.
- 4. Be sure cylinder is completely collapsed. If not, open relief valve (counterclockwise) and push ram in.
- 5. Close relief valve on hand pump (clockwise).
- 6. Remove cotters or pinlocks. If this is not possible, tool will shear off without damage to chain or tool, but repinning may be difficult due to the sheared cotter or pinlock that is pressed in the hole. Cover cotter with rag before shearing.
- 7. Place chain link to be disassembled securely in saddle with cotter end of pin facing toward ram.
- 8. For stability it may be helpful to secure pump to steel plate or flat board.
- 9. Apply pressure by pumping hand pump. Be sure ram is squarely on end of pin and that head end will clear discharge slot on opposite end.
- 10. After pin is free of sidebars remove pin from chain link by pulling through discharge slot.
- 11. To remove chain from unit, open relief valve (counterclockwise) and close cylinder by pushing ram in.
- 12. Replace dust cover on cylinder.

	Drivema	aster I*	
No. 3	RO 635	RX1207	B3112
RX238	R778	1240	R3112
R362	1030	1244	B3113
R432	R1033	RX1245	3120
R 506	R1035	R1248	3125
R514	1037	X1343	31 40
A 520	A1204	X1345	31 60C N
B578	RO1205	AX1568	3180
R 588			
	Drivema	ister II *	_
R01306	RX9506	X1311	X1365
ROS1306	1 301	X1307	A1309

 $^{\textcircled{0}}$ Contact Rexnord for non-listed chains. Rex drive chains are listed. To interchange Link-Belt and Rex chain numbers see pages 34-35.

- Part Identification
- Relief Valve
 Cylinder
- ³ Ram
- ^④ Saddle and Support Plate

TO ASSEMBLE CHAIN: 1. READ AND FOLLOW ALL

- 1. READ AND FOLLOW ALL PRECAUTIONS LISTED ON CHAIN TOOL.
- 2. Be sure to use the correct chain adapters for the chain being assembled. Adapters are labeled with chain number.
- 3. Remove dust cover from cylinder and connect pump hose to cylinder by finger tightening.
- 4. Place pin in chain joint to be assembled by hand as far as possible. Line up pin locking flats where applicable; tap pin with hammer to "Snug-Up", (improper alignment could shear hole).
- 5. Close relief valve on hand pump (clockwise).
- 6. Place chain joint securely in saddle (4) with pin head facing toward ram.
- 7. For stability it may be helpful to secure pump to steel plate or flat board.
- 8. Apply pressure by pumping hand pump. Be sure that ram is squarely on pin head.
- 9. After pin head is flush with sidebars open relief valve (counterclockwise) and close cylinder by pushing ram down. Remove chain.
- 10. If chain does not flex freely, hit pin cotter end hard with hammer to establish clearance.
- 11. Replace dust cover on cylinder.

- PRECAUTIONS
- 1. Always wear safety glasses.
- 2. Take necessary precautions to secure chain.
- 3. Be sure to use correct chain adapters.
- 4. This tool is not to be used to manufacture chain.
- 5. Do not hammer on this unit when it is under pressure, or at any other time!
- 6. Always use the hand pump supplied with this unit. Drivemaster will not be supplied without hand pump.
- 7. When not in use, be sure dust covers are replaced.
- 8. Use this tool only with the chains recommended by Rexnord Corp.

CHAIN ASSEMBLY/ DISASSEMBLY TOOLS - LINKMASTER®

Keep the advantages of interference fit by eliminating pin grinding or heating of sidebars which decreases the fatigue strength of the chain, resulting in premature chain failure.

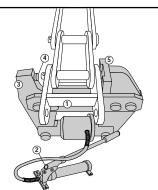
The design of this tool will facilitate assembly or disassembly of larger straight sidebar chains including the Rex® ER800 and ER900 Series and Link-Belt® SBX800 and SBX2800 Series elevator chains. The outstanding "mobility" of this tool allows usage "in the elevator" as well as on the floor.

Contact Rexnord for chains not mentioned above.

Elevator Chains - Rex ER800 and ER900 Series - Link-Belt SBX800 and SBX2800 Series

For detailed dimensions of these chains, see "Numerical Chain and Sprocket" index for page location.

ASSEMBLY


- 1. Insert pin in joint as far as possible. A light coat of oil may be applied to the pin O.D. and sidebar holes to facilitate assembly. Tap the pin lightly with a hammer to provide a snug fit as improper alignment could damage the holes.
- 2. Place the Linkmaster over the chain joint, and apply pressure squarely on the pin head. Make sure the cotter end clears the recessed contact plate on the opposite end (see View "A").
- Flat Bar) 3. Apply pressure until the pin head is ² Relief Valve almost flush with the sidebar. Check the Linkmaster periodically so it doesn't slip off of the pin.
- 4. Open the relief valve to reduce pressure.
- 5. Insert the cotter.
- 6. Apply a firm hammer blow on the end of the pin to loosen the joint so it may flex freely.
- 7. Insert spacer gage between the inside surfaces of the outside sidebars to verify the proper width between them has been maintained.
- 8. Replace the dust cover on the cylinder.

VIE W A

Rex Linkmaster tool shown positioned to assemble ER864 chain. Apply pressure to pin head only until it contacts sidebar. Be sure pin end will clear support plates shown in View "A".

PRECAUTIONS

- 1. Always wear safety glasses.
- 2. Take necessary precautions to secure chain.
- 3. Be sure to use correct chain adapters.
- 4. This tool is not to be used to manufacture chain.
- 5. Do not hammer on this unit when it is under pressure, or at any other time!

Part Identification 1

Spacer Gage Spacer Gage [®] Force Arm (4) Ram 5 Support Plate

DISASSEMBLY

Tool shown in chain disassembly position. To reassemble chain, reverse tool so ram (4) contacts pin head.

- 1. Be sure cylinder is completely collapsed.
- 2. Close relief valve on hand pump.
- 3. Remove cotters, if possible. Otherwise, the Linkmaster will shear them off without damage to the chain or itself.
- 4. Apply pressure by pumping hand pump. Be sure ram is squarely on end of pin and that the head end clears the recessed

contact plate on the opposite end

(see View "B"). Check this periodically until pin is free of sidebars. Failing to do this could damage pump.

- 5. To remove unit from chain, open relief valve and close cylinder by pushing force arms together. Newer models have automatic spring return cvlinders.
- 6. Replace the dust cover on the cylinder.

VIE W B Tool shown positioned to disassemble ER864 chain. Be sure pin head will clear support plate as shown in View "B".

- 6. Always use the hand pump supplied with this unit. Drivemaster will not be supplied without hand pump.
- 7. When not in use, be sure dust covers are replaced.
- Use this tool only with the chains recommended 8. by Rexnord Corp.

SPROCKET PITCH DIAMETERS

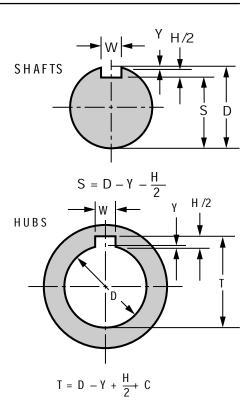
The following table (based on chordal pitch) shows the correct sprocket pitch diameters for all types of chains having a taut, uniform pitch of one inch. Sprocket pitch diameters for other uniform chain pitches are directly proportional to the chain pitch. To determine sprocket pitch diameters for any other chain pitch, multiply the tabular diameter by the chain pitch used.

						Dimer	isions are in inches
No. or Teeth "N"	Pitch Diameter						
4	1.4142	28	8.9314	52	16.5621	76	24.1985
5	1.7013	29	9.2491	53	16.8802	77	24.5166
6	2.0000	30	9.5668	54	17.1984	78	24.8349
7	2.3048	31	9.8844	55	17.5166	79	25.1532
8	2.6131	32	10.2023	56	17.8349	80	25.4713
9	2.9238	33	10.5201	57	18.1527	81	25.7896
10	3.2361	34	10.8379	58	18.4710	82	26.1079
11	3.5494	35	11.1558	59	18.7891	83	26.4261
12	3.8637	36	11.4737	60	19.1073	84	26.7442
13	4.1786	37	11.7916	61	19.4254	85	27.0626
14	4.4940	38	12.1096	62	19.3737	86	27.3807
15	4.8097	39	12.4276	63	20.0619	87	27.6989
16	5.1258	40	12.7455	64	20.3800	88	28.0170
17	5.4422	41	13.0635	65	20.6981	89	28.3355
18	5.7588	42	13.3815	66	21.0136	90	28.6537
19	6.0755	43	13.6995	67	21.3347	91	28.9724
20	6.3925	44	14.0175	68	21.6528	92	29.2901
21	6.7095	45	14.3356	69	21.9710	93	29.6082
22	7.0276	46	14.6536	70	22.2890	94	29.9268
23	7.3439	47	14.9717	71	22.6073	95	30.2447
24	7.6613	48	15.2898	72	22.9256	96	30.5628
25	7.9787	49	15.6079	73	23.2438	97	30.8811
26	8.2962	50	15.9269	74	23.5620	98	31.1994
27	8.6138	51	16.2441	75	23.8802	99	31.5177
						100	31.8362

CONVERSION TABLE

Fraction	Decimal	Millimeters	Fraction	Decimal	Millimeters
1/64	.01 5625	.3969	³³ /64	.515625	13.0969
¹ / ₃₂	.03125	.7938	17/32	.53125	13.4938
³ / ₆₄	.046875	1.1906	³⁵ /64	.546875	13.8907
¹ /16	.0625	1.5875	⁹ /16	.5625	14.2876
⁵ /64	.078125	1.9844	³⁷ /64	.578125	14.6844
3/32	.09375	2.3813	19/ ₃₂	.59375	15.0813
7/64	.109375	2.7781	³⁹ /64	.609375	15.4782
¹ /8	.125	3.1750	⁵ /8	.625	15.8751
⁹ /64	.140625	3.5719	⁴¹ /64	.640625	16.2719
⁵ /32	.15625	3.9688	²¹ /32	.65625	16.6688
¹¹ / ₆₄	.171875	4.3656	⁴³ / ₆₄	.671875	17.0657
³ /16	.1875	4.7625	¹¹ /16	.6875	17.4626
¹³ /64	.203125	5.1594	⁴⁵ /64	.703125	17.8594
7/32	.21875	5.5563	²³ / ₃₂	.71875	18.2563
¹⁵ /64	.234375	5.9531	47 /64	.734375	18.6532
1/4	.250	6.3500	3/4	.750	19.0501
¹⁷ / ₆₄	.265625	6.7469	49/64	.765625	19.4470
⁹ /32	.28125	7.1438	²⁵ /32	.78125	19.8438
¹⁹ /64	.296875	7.5406	⁵¹ /64	.796875	20.2407
⁵ /16	.3125	7.9375	¹³ /16	.81 25	20.6376
²¹ /64	.328125	8.3344	⁵³ /64	.828125	21.0345
¹¹ / ₃₂	.34375	8.7313	27 / ₃₂	.84375	21.4313
²³ / ₆₄	.359375	9.1282	⁵⁵ /64	.859375	21.8282
³ /8	.375	9.5250	⁷ /8	.875	22.2251
²⁵ / ₆₄	.390625	9.9219	⁵⁷ /64	.890625	22.6220
13/ ₃₂	.40625	10.3188	29/ ₃₂	.90625	23.0188
27 / ₆₄	.421875	10.7157	⁵⁹ / ₆₄	.921875	23.4157
7/ ₁₆	.4375	11.1125	¹⁵ /16	.9375	23.8126
²⁹ /64	.453125	11.5094	⁶¹ /64	.953125	24.2095
¹⁵ /32	.46875	11.9063	³¹ /32	.96875	24.6063
³¹ /64	.484375	12.3032	⁶³ / ₆₄	.984375	25.0032
¹ /2	.500	12.7001	1	1.000	25.4001

STANDARD KEY AND SETSCREW SIZES


Keyseats and Keys

Drawings and formulas at right illustrate how the depth and width of standard keyseats in shafts and hubs are determined. Refer to explanation of symbols.

Symbols:

- **C** = Allowance or clearance for key (normally .005" for parallel keys).
- **D** = Nominal shaft or bore diameter, inches
- H = Nominal key height, inches
- W = Nominal key width, inches
- \mathbf{Y} = Chordal height, inches

$$\mathbf{T} = \frac{\sqrt{\mathbf{D} - \mathbf{D}2 - \mathbf{W}2}}{2}$$

Dimensions are in inches.

ſ	Shaft Diameters		Кеу	Set	Shaft Di	ameters	Кеу	Set	Shaft Di	ameters	Кеу	Set	Shaft Di	ameters	Кеу	Set
Ī	Over	Thru	W x H/2	Screw	Over	Thru	W x H/2	Screw	Screw Over		W x H/2	Screw	Over	Thru	W x H/2	Screw
Ī	⁷ /16	⁹ /16	¹ /8 x ¹ /16	#10	1 ³ /4	2 ¹ /4	¹ /2 x ¹ /4	¹ /2	4 ¹ /2	5 ¹ /2	1 ¹ /4 x ⁵ /8	7 /8	11	13	3 x 1	1
	⁹ /16	7/8	³ / ₁₆ x ³ / ₃₂	1 /4	21/4	23/4	⁵ /8 x ⁵ /16	1/2	5 ¹ /2	61/2	1 ¹ / ₂ x ³ / ₄	1	13	15	3 ¹ / ₂ x 1 ¹ / ₄	1
- [7/8	1 ¹ /4	¹ / ₄ x ¹ / ₈	⁵ /16	23/4	31/4	³ / ₄ x ³ / ₈	5/8	6 ¹ /2	71/2	1 ³ /4 x ³ /4	1	15	18	4 x 1 ¹ /2	1
	1 ¹ / ₄	1 ³ /8	⁵ /16 x ⁵ /32	3 /8	31/4	33/4	⁷ /8 x ⁷ /16	3/4	71/2	9	2 x 1 ³ /4	1	18	22	5 x 1 ³ /4	1
-1	1 ³ /8	1 ³ /4	³ /8 x ³ /16	³ /8	3 ³ /4	4 ¹ /2	$1 x^{1/2}$	³ /4	9	11	2 ¹ /2 x ⁷ /8	1	22	26	6 x 2	1
													26	30	7 x 2 ¹ /2	1

STANDARD KEYWAY AND SETSCREW SIZES

MINIMUM SHAFT CENTER DISTANCE

At least 120° wrap is desirable. The minimum center distance to assure 120° wrap may be found by using the following equation:

$$\mathbf{CDp} = \frac{\mathbf{N} - \mathbf{n}}{3.1}$$

On ratios of less than 3:1, wrap will always be at least 120° in a two sprocket system. The minimum center distance to avoid interference between the two sprockets is:

$$\mathbf{Min.} \ \mathbf{CDp} = \frac{\mathbf{N} + \mathbf{n}}{6} + 1$$

Where: CDp = center distance in pitches

N = number of teeth on driven sprocket

n = number of teeth on driver sprocket

Use the larger value of CDp for your center distance.

Feet of center distance =

Center Distance (pitches) x Chain Pitch (Ins.) 12

MINIMUM CHAIN LENGTH

The approximate chain length may be obtained using this formula:

 $\mathbf{L}\mathbf{p} = 2\mathbf{C}\mathbf{D}\mathbf{p} + \mathbf{N} + \mathbf{n} + \mathbf{K}$

Where: Lp = Length of chain, in Pitches

CDp = Distance between shaft centers, in **Pitches**

Ν = Number of teeth on DriveN sprocket

= Number of teeth on DriveR sprocket n

Κ $= .0258 \text{ x} (\text{N} - \text{n})^2$ CDp

Feet of chain =

Chain Length (pitches) x Pitch of Chain (Ins.)

12

POWER AND CYCLE CALCULATIONS Horsepower

HP = T(RPM)

63000

HP = P (FPM)

Center Distance

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

.125

8.3

33.3

75.0

133.3

208.3

300.0

408.3

533.3

675.0

833.3

1008.0

1200.0

1406.0

1633.0

1875.0

33000

Where: T = Torque (Inch-Lb.) Ρ = Net chain pull (lbs.)

RPM = Shaft speed (Rev./Minute)

FPM = Chain speed (Ft./Minute)

Chain Speed (In FPM)

= RPM (no. of teeth) (pitch in inches) FPM 12

Number of Cycles of Chain Operation

A cycle is defined as one complete traverse of a given link around the sprockets and back to its starting point. The number of cycles a chain has been operated can be calculated as follows:

(no. of teeth) (RPM) (60) (HR) Total Cycles = (no. of Pitches in Chain) Where: **HR** = Total operating time (hours)

Catenary Tension

The tension in the chain on the slack side, caused by the catenary sag of the unsupported chain, can be calculated from the following formula:

$$\Gamma = \frac{B^2 \times W}{96 \text{ CS}} + \frac{W \times CS}{12}$$

Where: \mathbf{T} = Chain tension due to cantenary sag (lbs.)

 \mathbf{B} = Center Distance (inches)

W = Weight of chain (lbs./ft.)

CS= Catenary sag (inches)

Catenary tension for a chain weighing one pound per foot is shown in the accompanying table. To find the tension in a chain weighing "W" pounds per foot, multiply the listed value by "W".

CATENARY TENSIO

802.8

900.0

602.1 401.5 301.1 150.7 100.6

752.1 501.5 376.1 188.2 125.6

675.0 450.1 337.6 168.9

3333.0 1667.0 1111.0 833.4 555.6 416.8 208.5 139.1

25

4.2

16.7

37.5

66.7

104.2

150.0

204.2

266.7

337.5

416.7

504.2

600.0

704.2

816.7

937.5

3008.0 1504.0 1003.0

ISIO	N – I	POU	NDS									D	imensio	ns are ir	ninches
	Amount of Catenary Sag														
. 375	. 50	.75	1.0	20	30	40	50	60	7.0	80	90	10.0	120	14.0	160
2.8	2.1	1.5	1.1	0.7	0.6	0.6	0.6	0.7	0.7	0.8	0.9	0.9	1.1	1.2	1.4
11.1	8.4	5.6	4.3	2.3	1.6	1.4	1.3	1.2	1.2	1.2	1.2	1.3	1.3	1.5	1.6
25.0	18.8	12.6	9.5	4.9	3.4	2.7	2.3	2.1	1.9	1.8	1.8	1.8	1.8	1.8	1.9
44.5	33.4	22.3	16.8	8.5	5.8	4.5	3.8	3.3	3.0	2.8	2.6	2.5	2.4	2.4	2.4
69.5	52.1	34.8	26.1	13.2	8.9	6.8	5.6	4.8	4.3	3.9	3.6	3.4	3.2	3.0	3.0
100.0	75.0	50.1	37.6	18.9	12.8	9.7	7.9	6.8	5.9	5.4	4.9	4.6	4.1	3.8	3.7
136.1	102.1	68.1	51.1	25.7	17.3	13.1	10.6	9.0	7.9	7.0	6.4	5.9	5.3	4.8	4.5
177.8	133.4	89.0	66.8	33.5	22.5	17.0	13.8	11.6	10.1	9.0	8.2	7.5	6.6	5.9	5.5
225.0	168.8	112.6	84.5	42.4	28.4	21.4	17.3	14.6	12.6	11.2	10.1	9.3	8.0	7.2	6.6
277.6	208.4	139.0	104.3	52.3	35.0	26.4	21.3	17.9	15.5	13.7	12.3	11.3	9.7	8.6	7.8
336.1	252.1	168.1	126.1	63.2	42.3	31.8	25.6	21.5	18.6	16.4	14.8	13.4	11.5	10.2	9.2
400.0	300.0	200.1	150.1	75.2	50.3	37.8	30.4	25.5	22.0	19.4	17.4	15.8	13.5	11.9	10.7
469.5	352.1	234.8	176.1	88.2	58.9	44.3	35.6	29.8	25.7	22.7	20.3	18.4	15.7	13.7	12.3
544.5	408.4	272.3	204.3	102.3	68.3	51.4	41.3	34.5	29.8	26.2	23.4	21.3	18.0	15.8	14.1
625.0	468.8	312.6	234.5	117.4	78.4	58.9	47.3	39.6	34.1	30.0	26.8	24.3	20.5	17.9	16.0
711.1	533.4	355.6	266.8	133.5	89.1	67.0	53.8	44.9	38.7	34.0	30.4	27.5	23.2	20.2	18.0

60.6

67.9

75.6

83.8

50.7

56.8

63.2

69.9

43.6

48.8

54.3

60.1

38.3

42.9

47.7

52.8

34.2

38.3

42.5

47.0

30.9

34.6

38.4

42.5

26.1

29.1

32.2

35.7

22.7

25.3

28.0

30.9

75.6

84.7

94.3

104.5

112.8

^① For chain weighing one pound per foot

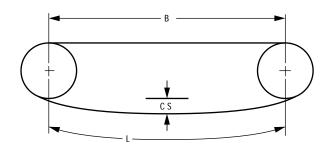
2133.0 1067.0

2408.0 1204.0

2700.0 1350.0

20.1

22.4


24.8

27.4

Catenary Sag

The return strand of a chain normally has some slack. This slack results in a sag, called catenary sag, of the chain. This sag must be of the correct amount if the chain is to operate properly. If the return strand is too tight (too little catenary sag), the load and the wear on working parts will be excessive. If the return strand is too loose, vibration and unwanted chain flexure will result. A chain that is properly installed will permit flexing of the return strand by hand. This flexure, measured from a straight line, should not be less than about 3% of the horizontal center distance. The amount of catenary sag that will be present can be calculated as follows:

Depending on the combination of chain pitch, sprocket center distance, and number of teeth in the sprockets, there will always be excess chain in the system. The catenary sag resulting from this excess chain for various sprocket center distances is given in the table below.

Dimensions are in inches.

 $CS = \sqrt{.375 BE}$

- Where: CS = Catenary sag (inches)
 - = Return strand length (inches) L
 - В = Center distance (inches)
 - Ε = Excess chain, L - B (inches)

CATENARY SAG

Center									Excess	Chain								
Distance	.063	. 125	.188	. 250	. 313	. 375	. 438	. 500	. 625	. 750	. 875	1.00	1.50	200	2 50	3 00	3.50	4.00
10	0.5	0.7	0.8	1.0	1.1	1.2	1.3	1.4	1.5	1.7	1.8	1.9	2.4	2.7	3.1	3.4	3.6	3.9
20	0.7	1.0	1.2	1.4	1.5	1.7	1.8	1.9	2.2	2.4	2.6	2.7	3.4	3.9	4.3	4.7	5.1	5.5
30	0.8	1.2	1.5	1.7	1.9	2.1	2.2	2.4	2.7	2.9	3.1	3.4	4.1	4.7	5.3	5.8	6.3	6.7
40	1.0	1.4	1.7	1.9	2.2	2.4	2.6	2.7	3.1	3.4	3.6	3.9	4.7	5.5	6.1	6.7	7.2	7.7
50	1.1	1.5	1.9	2.2	2.4	2.7	2.9	3.1	3.4	3.8	4.1	4.3	5.3	6.1	6.8	7.5	8.1	8.7
60	1.2	1.7	2.1	2.4	2.7	2.9	3.1	3.4	3.8	4.1	4.4	4.7	5.8	6.7	7.5	8.2	8.9	9.5
70	1.3	1.8	2.2	2.6	2.9	3.1	3.4	3.6	4.1	4.4	4.8	5.1	6.3	7.2	8.1	8.9	9.6	10.2
80	1.4	1.9	2.4	2.7	3.1	3.4	3.6	3.9	4.3	4.7	5.1	5.5	6.7	7.7	8.7	9.5	10.2	11.0
90	1.5	2.1	2.5	2.9	3.2	3.6	3.8	4.1	4.6	5.0	5.4	5.8	7.1	8.2	9.2	10.1	10.9	11.6
100	1.5	2.2	2.7	3.1	3.4	3.8	4.1	4.3	4.8	5.3	5.7	6.1	7.5	8.7	9.7	10.6	11.5	12.2
110	1.6	2.3	2.8	3.2	3.6	3.9	4.2	4.5	5.1	5.6	6.0	6.4	7.9	9.1	10.2	11.1	12.0	12.8
120	1.7	2.4	2.9	3.4	3.8	4.1	4.4	4.7	5.3	5.8	6.3	6.7	8.2	9.5	10.6	11.6	12.5	13.4
130	1.7	2.5	3.0	3.5	3.9	4.3	4.6	4.9	5.5	6.0	6.5	7.0	8.6	9.9	11.0	12.1	13.1	14.0
140	1.8	2.6	3.1	3.6	4.1	4.4	4.8	5.1	5.7	6.3	6.8	7.2	8.9	10.2	11.5	12.5	13.6	14.5
150	1.9	2.7	3.2	3.8	4.2	4.6	5.0	5.3	5.9	6.5	7.0	7.5	9.2	10.6	11.9	13.0	14.0	15.0
160	1.9	2.7	3.4	3.9	4.3	4.7	5.1	5.5	6.1	6.7	7.2	7.7	9.5	11.0	12.2	13.4	14.5	15.5
170	2.0	2.8	3.5	4.0	4.5	4.9	5.3	5.6	6.3	6.9	7.5	8.0	9.8	11.3	12.6	13.8	14.9	16.0
180	2.1	2.9	3.6	4.1	4.6	5.0	5.4	5.8	6.5	7.1	7.7	8.2	10.1	11.6	13.0	14.2	15.4	16.4
190	2.1	3.0	3.7	4.2	4.7	5.2	5.6	6.0	6.7	7.3	7.9	8.4	10.3	11.9	13.3	14.6	15.8	16.9
200	2.2	3.1	3.8	4.3	4.8	5.3	5.7	6.1	6.8	7.5	8.1	8.7	10.6	12.2	13.7	15.0	16.2	17.3
NOTE			a a si a la ta a	6 ala a la a a				or groat										

NOTE: Values above and to the right of the heavy stepped line represent 3% or greater sag.

■ ENGINEERING DATA WEIGHTS AND CONVEYING CHARACTERISTICS OF MATERIALS

Table (A) lists CEMA material class descriptions and corresponding codes referred to in Table (B). Table (B) lists typical values. Some materials, particularly ores, vary widely. Weight and angle or repose depend largely on the size distribution in a given material. Degree of aeration may be important factor in density of very fine material. Angle of repose may increase with the percentage of fines as well as the angularity of the particles. Fines carry most of the moisture content, which is often the controlling factor. For these reasons, the values given can only be approximate.

TABLE A – CEMA MATERIAL CLASS DESCRIPTION

	Material Characteristics	Code
	Very fine – 100 mesh and under	A
	Fine — ¹ /s inch and under	В
SIZE	G ranular – Under 1/2 inch	С
	Lumpy – containing lumps over 1/2 inch	D
	lrregular – string, interlocking, mats together	E
FLOWABILITY	Very free flowing – angle of repose less than 20°	1
ANGLE OF	Free flowing – angle of repose 20 degrees to 30°	2
REPOSE	Average flowing – angle of repose 30° to 45°	2 3 4
INEI ODE	Sluggish – angle of repose 45° and over	
	N on-abrasive	5
ABRASIVENESS	Abrasive	6
TIDIO IOTVENESS	Very abrasive	7
	Very sharp – cuts or gouges belt covers	8
	Very dusty	L
	Aerates and develops fluid characteristics	М
	Contains explosive dust	N
	C ontaminable affecting use of saleability	Р
MISCELLANEOUS	Degradable, affecting use of saleability	Q
CHARACTERISTICS	G ives off harmful fumes or dust	R S T
(Sometimes more	Highly corrosive	S
than one of	Mildly corrosive	
these characteristics	Hygroscopic	U
may apply.)	Interlocks or mats	V
	0 ils or chemicals present – may affect rubber products	W
	Packs under pressure	Х
	Very light and fluffy – may be wind swept	Y
	E levated temperature	Z

TABLE B – CONVEYING PROPERTIES OF MATERIALS

Material	Lbs. per	Angle of	Recom'd Max.	Code	Material	Lbs. per	Angle of	Recom'd Max.	Code
Watchar	Cu. Ft.	Repose	Inclin.	COUC		Cu. Ft.	Repose	Inclin.	
Alfalfa meal	17	45°		B 46Y	Carbon black, powder	4-7	30-44°	—	*A 35Y
Alum, fine	45-50	30-44°	—	B 3 5	Carborundum, 3" and under	100	20-29°	—	D 27
Alum, lumpy	50-60	30-44°	_	D 3 5	Casein	36	30-44°	—	B 3 5
Alumina	50-65	22°	10-12°	B 27 M	Castiron chips	90-120	45°	—	C 46
*Aluminum chips	7 -1 5	45°	—	E 46Y	Cement, Portland	72-99	30-44°	20-23°	A 36M
Aluminum hydrate	18	34°	20-24°	C 35	Cement, Portland, aerated	60-75	—	—	A16M
Aluminum oxide	70-120	29°	—	A 27 M	Cement, rock (see limestone)	100-110	—	—	D 36
A luminum silicate	49	30-44°	—	B 35S	C ement clinker	75-95	30-40°	18-20°	D 37
A luminum sulphate	54	32°	17°	D 3 5	C halk, lumpy	75-85	45°	—	D 46
Ammonium chloride, crystalline	45-52	30-44°	—	B 36S	*C harcoal	18-25	35°	20-25°	D 36Q
Ammonium nitrate	45	30-44°	—	*C 36N U S	Chrome ore (chromite)	125-140	30-44°	—	D 37
Ammonium sulphate, granular	45-58	44°		*C 35TU	C inders, blast furnace	57	35°	18-20°	*D 37 T
Asbestos, ore or rock	81	30-44°		D 37R	C inders, coal	40	35°	20°	*D 37 T
Asbestos, shred	20-25	45°		E 46XY	Clay, calcined	80-100			B 37
Ashes, coal, dry, 3" and under	35-40	45°		D 46T	C lay, dry, fines	100-120	35°	20-22°	C 37
Ashes, coal, wet, 3" and under	45-50	45°		D 46T	Clay, dry, lumpy	60-75	35°	18-20°	D 36
Ashes, fly	40-45	42°	20-25°	A 37	C oal, anthracite, sized	55-60	27°	16°	C 26
Ashes, gas-producer, wet	78			D 47 T	C oal, bituminous, mined 50 mesh and less	50-54	45°	24°	B 45T
Asphalt, binder for paving	80-85	_	_	C 45	Coal, bituminous, mined and sized	45-55	35°	16°	D 35T
Asphalt, crushed, $1/2$ " and under	45	30-44°		C 35	C oal, bituminous, mined, run of mine	45-55	38°	18°	D 35T
Bagasse	7-10	45°		E 4 5 Y	C oal, bituminous, stripping, not cleaned	50-60			D 36T
Bakelite and similar plastics, powdered	35-45	45°		B 4 5	C oal, lignite	40-45	38°	22°	D 36T
Barite	180	30-44°		B 36	Coke, loose	23-35	30-44°	18°	B 370 VT
Barium carbonate	72	45°	_	A 4 5	Coke, petroleum calcined	35-45	30-44°	20°	D 36Y
Barium oxide	150-200			A 46	Coke breeze, $1/4$ " and under	25-35	30-44°	20-22°	C 37Y
*Bark, wood, refuse	10-20	45°	27°	E 45VY	Compost	30-50	_		E 45S T
Basalt	80-103	20-28°		B 26	C oncrete, cinder	90-100		12-30°	D 46
B auxite, ground, dry	68	20-29°	20°	B 26	C opper ore	120-150	30-44°	20°	*D 37
B auxite, mine run	80-90	31 °	17°	E 37	C opper sulfate	75-85	31°	17°	D 36
B auxite, crushed, 3" and under	75-85	30-44°	20°	D 37	C ork, granulated	12-15		—	C 45
*B entonite, crude	35-40	42-44°		D 36X	C orn, shelled	45	21 °	10°	C 25N W
Bentonite, 100 mesh and under	50-60	42°	20°	A 36X Y	C ottonseed cake, crushed	40-45	30-44°		B 35
Boneblack, 100 mesh and under	20-25	20-29°		A 2 5 Y	Cottonseed cake, lumpy	40-45	30-44°		D 35W
Bonechar	27-40	30-44°		B 36	C ottonseed meal	35-40	35°	22°	B 35W
Bonemeal	50-60	30-44°	_	B 36	Cottonseed meats	40	30-44°		B 35W
Borate of lime	60	30-44°	_	A 35	C ryolite, dust	75-90	30-44°	_	A 36
B orax, ¹ /2" screenings	55-60	30-44°		C 36	C ryolite, lumpy	90-100	30-44°	—	D 36
Borax, 3" and under	60-70	30-44°	_	D 35	Cullet	80-120	30-44°	20°	D 377
Boric acid, fine	55	20-29°		B 26T	Diatomaceous earth	11-14	30-44°		A 36MY
Brewer's grain, spent, dry	25-30	45°	_	C 45	Dicalcium phosphate	40-50	45°		A 4 5
Brewer's grain, spent, wet	55-60	45°		C 45T	Disodium phosphate	25-31	30-44°	-	B 360 T
Calcium carbide, crushed	70-80	30-44°	_	D 36N	Dolomite, lumpy	80-100	30-44°	22°	D 36
Carbon, activated, dry, fine	8-20	20-29°	_	B 26Y	Earth, as excavated —dry	70-80	35°	20°	B 36
Carbon black, pelletized	20-25	25°		B 250	Earth, wet, containing clay	100-110	45°	23°	B 46

*May vary considerably. Consult your Rexnord representative.

ENGINEERING DATA TABLE B – CONVEYING PROPERTIES OF MATERIALS – (CONT'D.)

Material	Lbs. per Cu. Ft.	Angle of Repose	Recom'd Max. Inclin.	Code	Material	Lbs. per Cu. Ft.	Angle of Repose	Recom'd Max. Inclin.	Code
Ebonite, crushed 1 /2" and under	65-70	30-44°	—	C 35	Potassium nitrate	76-80	20-29°	_	C 26T
Emery	230	20-29°	—	A 27	Potassium sulfate	42-48	45°	—	B 36X
Epson salts Feldspar, ¹ /2" screenings	40-50 70-85	30-44° 38°		B 35 B 36	Pumice, ¹ /8" and under Pyrites, iron, 2" to 3" lumps	40-45 135-145	45° 20-29°	_	B 47 D 26T
Feldspar, 1 ¹ /2" to 3" lumps	90-110	34°		D 36	Pyrites, pellets	120-130	20-29 30-44°	_	C 36T
Ferrous sulfate	50-75	_		C 36	Quartz, ¹ /2" screenings	80-90	20-29°	_	C 27Z
Filter press mud, sugar factory	70	_	_	A15	Q uartz, $1^{1}/2^{"}$ to 3" lumps	85-95	20-29°	_	D 27Z
Flue dust, boiler house, dry	35-40	20°		A17MTY	Rock, crushed	125-145	20-29°	—	D 2 6
Fluorspar, 1/2" screenings	85-105	45°		C 46	Rock, soft, excavated with shovel	100-110	30-44°	22°	D 36
Fluorspar, $1^{1}/2^{"}$ to $3^{"}$ lumps	110-120	45° 30-44°		D 46 D 37Z	Rubber, pelletized	50-55 25-30	35° 32°	22° 18°	D 3 5 D 3 5
Foundry refuse, old sand cores, etc. Fuller's earth, dry	30-35	23°		B 26	Rubber, reclaim Salicylic acid	29	52	10	B 2 5 U
Fuller's earth, oily	60-65	20-29°		B 26	Salt, common dry, coarse	40-55	_	 18-22°	C 36TU
Fuller's earth, oil filter, burned	40	20-29	_	B 26	Salt, common dry, fine	70-80	25°	11°	D 26TU W
Fuller's earth, oil filter, raw	35-40	35°	20°	*B 2 6	Salt cake, dry, coarse	85	36°	21 °	B 36T W
G lass batch, wool and container	80-100	30-44°		D 38Z	S alt cake, dry, pulverized	60-85	20-29°	—	B 26N T
G lue, pearl	40	25°		C 25	S and, bank, damp	105-130	45°	20-22°	B 47
G rain, distillery, spent, dry G rain, distillery, spent, wet	30 40-60	30-44° 45°		E 35W Y C 45V	S and, b ank, dry S and, core	90-110 65	35° 41°	16-18° 26°	B 37 B 35X
G ranite, ¹ /2" screenings	80-90	20-29°		C 45V C 27	S and, core S and, foundry, prepared	80-90	30-44°	20 24°	B 3 7
G ranite, $1^{1}/2^{"}$ to $2^{"}$ lumps	85-90	20-29°		D 27	S and, foundry, shakeout	90-100	39°	22°	D 37
G ranite, broken	95-100	30-44°		D 37	S and, silica, dry	90-100	20-29°	10-15°	B 27
G raphite, flake	40	30-44°	-	C 35	S and stone, broken	85-90	30-44°	_	D 37
G ravel, bank run	90-100	38°	20°	0.00	Sawdust	10-13	36°	22°	*B 35
G ypsum, 1/2" screenings	70-80	40°		C 36	Sewage sludge, moist	55	30-44°	_	B 36
G ypsum, $1^{1}/2^{"}$ to $3^{"}$ lumps	70-80	30°		D 36	Shale, broken	90-100	20-29°	-	D 26Q Z
G uano, dry H ops, spent, wet	70 50-55	20-29° 45°		B 26 E 45T	Shale, crushed Shellac	85-90 80	39° 45°	22°	C 36 C 45
lce, crushed	35-45	43 19°		D16	Shellac, powdered or granulated	31	45	_	B 35P Y
limenite ore	140-160	30-44°		B 37	S inter	100-135	35°	_	*D 37
Iron ore	100-200	35°	18-20°	*D 36	S lag, blast furnace, crushed	80-90	25°	10°	A 27
Iron ore pellets	116-130	30-44°	13-15°	D 37Q	S lag, furnace, granular, dry	60-65	25°	13-16°	C 27
lron sulfide	120-135	30-44°		D36	Slağ, furnace, ğranular, wet	90-100	45°	20-22°	B 4 7
Kaolin clay, 3" and under	63	35°		D 36	Slate, crushed, $1/2^{"}$ and under	80-90	28°	15°	C 36
Lactose Lead arsenate	32 72	30-44° 45°		A 35P X B 45R	S late, 1 ¹ /2" to 3" lumps S oap beads or granules	85-95 15-25	30-44°		D 26 C 35Q
Lead ores	200-270	43 30°	 15°	*B 36R T	S oda ash, briquettes	50	22°	7 °	C 26
Lead oxides	60-150	45°		B 45	S oda ash, briquettes	55-65	32°	19°	B 36
Lead oxides, pulverized	200-250	30-44°		A 36	Soda ash, light	20-35	37°	22°	A 36Y
Lead sulfide	240-260	30-44°		A36	S odium aluminate, ground	72	30-44°	—	B 36
Lignite, air-dried	45-55	30-44°		*D 35	Sodium aluminum sulfate	75	30-44°	—	A 36
Lime, ground, ¹ /8" and under	60-65	43°		B 35X	Sodium antimonate, crushed	49	31 °		C 36
*Lime, hydrated, ¹ /8" and under	40	40° 42°		B 35MX	S odium nitrate	70-80	24° 37°	11°	*D 25
Lime, hydrated, pulverized Lime, pebble	32-40 53-56	42° 30°		A 35MX Y D 35	S odium phosphate S oybeans, whole	50-65 45-50	37° 21-28°	 12-16°	B 36 C 27N W
Limestone, agricultural, ¹ / ₈ " and less	68	30-44°		B 36	S tarch	25-50	24°	12°	*B 25
Limestone, crushed	85-90	38°		C 36X	S teel chips, crushed	100-150	30-44°	_	D 37 W Z
Magnesium chloride	33	40°		C 45	S teel trimmings	75-150	35°	18°	E 37 V
Magnesium sulfate	40-50	30-44°	—		Sugar, raw, cane	55-65	45°	_	B 46TX
Malt, dry, whole	27-30	20-29°		C 25N	Sugar, refined, granulated, dry	50-55	30-44°	—	B 35PU
Malt, wet or green	60-65	45°		C 45	Sugar, refined, granulated, wet	55-65	30-44°	_	C 35X
Manganese dioxide	80	20.0	20.0	* *D 2 7	Sugar, beet pulp, dry	12-15	20-29°	—	C 26 C 26X
Manganese ore Manganese sulfate	125-140	39° 30-44°	20°	*D 37 C 37	Sugar, beet pulp, wet Sugar cane, knifed	25-45 15-18	20-29° 45°	_	E 45V
Marble, crushed $1/2$ " and under	80-95	30-44°		D 37	Sulfate, crushed, $1/2^{"}$ and under	50-60	30-44°	20°	C 35N S
Marl	80	30-44°		C 37	Sulfate, 3" and under	80-85	30-44°	18°	D 35N S
Mica, flakes	17-22	19°	—	B16MY	Taconite, pellets	116-130	30-44°	13-15°	D 37 Q
Mica, ground	13-15	34°		*B 36	Talc, ¹ /2" screenings	80-90	20-29°	—	C 25
Milk, malted	30-35	45°		A 45P X	Talc, $1^{1}/2^{"}$ to $3^{"}$ lumps	85-95	20-29°	—	D 2 5
*Molybdenite, powdered	107	40° 40°		B 35	Titanium dioxide	140	30-44°	—	B 36
Molybdenum ore	107	-		B 36	Titanium sponge	60-70	45°	_	E 47
Nickel-cobalt, sulfate ore O il cake	80-150 48-50	30-44° 45°		*D 37T D 45W	Tobacco scraps Tobacco stems	15-25 15	45° 45°	_	D 45Y E 45Y
O xalic acid crystals	60	30-44°		B 35S U	Traprock, ¹ /2" screenings	90-100	30-44°	_	C 37
O yster shells, ground, under ¹ /2"	50-60	30-44°		C 36T	Traprock, 2" to 3" lumps	100-110	30-44°	—	D 37
0 yster shells, whole	80	30-44°		D 36TV	Trisodium phosphate, granular	60	30-44°	11°	B 35
Paper pulp stock	40-60	19°	—	*E15MV	Trisodium phosphate, pulverized	50	40°	25°	B 35
Peanuts, in shells	15-24	30-44°		D 35Q	Vermiculite, expanded	16	45°	_	C 45Y
Peanuts, shelled	35-45	30-44°		C 35Q	Vermiculite ore	70-80	20 44 9	20°	D 36Y
Phosphate, acid, fertilizer Phosphate, triple super, ground fertilizer	60 50-55	26° 45°		B 2 5 T B 4 5 T	W alnut shells, crushed W ood chips	35-45 10-30	30-44° 45°	27°	B 37 E 45W Y
Phosphate, triple super, ground tertilizer Phosphate rock, broken, dry	75-85	45° 25-29°		D 26	W ood chips W ood chips, hogged, fuel	10-30	45°	21*	E 45W Y
Phosphate rock, pulverized	60	40°		B 36	Zinc concentrates	75-80	40	_	B 26
Polystyrene pellets	35	23°		B 25P Q	Zinc concentrates	160	38°	22°	*
Potash salts, sylvite, etc.	80	20-29°		B 25T	Zinc ore, roasted	110	38°		C 36
Potassium carbonate	51	20-29°		B 26	Zinc oxide, heavy	30-35	45-55°	—	A 45X
Potassium chloride, pellets	120-130	30-44°		C 36T	Zinc oxide, light	10-15	45°		A 4 5 X Y

*May vary considerably. Consult your Rexnord representative.

ENGINEERING CONSTANTS

28.8 = equivalent mol. wgt. of air 288,000 Btu per 24 hr. = 1 ton of refrigeration 29.921 in. Hg at 32° F = atm. press. 299 792 458 m/s = velocity of light (c) 3 ft. = 1 yard30 in. Hg at 62° F = atmos. press. (very closely) 31 (31.5 for some substances) gallons = 1 barrel $3.1416 = \pi$ (Greek letter "pi") = ratio circumference of circle to diameter = ratio area of circle to square of radius 32 deg. F = freezing point of water = 0° C. 32 =atomic wgt. sulphur (S) 32 = mol. wgt. oxygen gas (O₂) 32.16 feet/sec^2 = acceleration of gravity (g) 3.2808 ft. = 1 meter 33,000 ft.-lb. per min. = 1 hp. 33.947 ft. water at 62° F = atm. press. 3,415 Btu = 1 kw-hr. 3.45 lb. steam "f.&a. 212" per sq. ft. of heating surface per hr. = rated boiler evaporation. 34.56 lb. = wgt. air to burn 1 lb. hydrogen (H) 35.314 cu. ft. = 1 cu. meter 3.785 liters = 1 gal. 39.2° F (4° C) water is at greatest density 39.37 in. = 1 meter = 100 cm = 1000 mm 3.9683 Btu = 1 kg calorie 4,000 Btu (4,050) = cal. val. of sulphur (S) 4.32 lb. = wgt. air req. to burn 1 lb. sulphur (S) 0.433 lb. per sq. in. = 1 ft. of water at 62° F 43,560 sq. ft. = acre 44 = mol. wgt. carbon dioxide (CO₂)0.45359 kg. = 1 lb. -460° F (459.6°F) = absolute zero. 0.47 Btu per pound per $^{\circ}F$ = approx. specific heat of super-heated steam at atm. press. 0.491 lb. per sq. in. = 1 in. Hg at 62° F 5.196 lb. per sq. ft. = 1 in. water at 62° F 5,280 ft. = 1 mile

53.32 = R, a constant for air, expansion equation: PV = MRT550 ft.-lb. per sec. = 1 hp. $57.296^\circ = 1$ radian (angle) 58.349 grains per gal = 1 gram per liter 59.76 lb. = wgt. 1 cu. ft. water at 212° F 61.023 cu. in. = 1 liter 62,000 Btu = cal. val. (higher) hydrogen (H) 0.62137 miles = 1 kilometer 0.062428 lb. per cu. ft. = 1 kg per cu. meter 62.5 (62.355) lb. = wgt. 1 cu. ft. water at 62° F $645 \text{ mm}^2 = 1 \text{ sq. in.}$ 7,000 grains = 1 lb.0.0735 in. Hg at 62° F = 1 in. water at 62° F 746 (745.7) watts = 1 hp. 7.5 (7.4805) gal. = 1 cu. ft. 760 millimeters Hg = atm. press. at 0° C 0.07608 lb. = wgt. 1 cu. ft. air at 62° F and 14.7 per sq. in. 778 (777.5) ft.-lb. = 1 Btu (work required to raise 1 lb. water 1° F) $0.7854 (= 3.1416 \div 4)$ x diameter squared = area circle 8 = 1b. oxygen required to burn 1 lb. hydrogen (H) 8.025 (= square root of 2g) x square root of head (ft.) = theoretical velocity of fluids in ft. per sec. 0.08073 lb. = wgt. 1 cu. ft. air at 32° F and 14.7 lb. per sq. in. $8\frac{1}{3}$ (8.3356) lb. = wgt. 1 gal. water at 62° F 8,760 hr. = 1 year of 365 days 88 ft. per sec. (min.) = 1 mile per min. (hr.)9 sq. ft. = 1 sq. yard 0.0929 sq. meters = 1 sq. ft.

970.4 Btu = Latent heat of evap. of water at 212° F

STRENGTH OF MATERIALS HARDNESS AND STRENGTH COMPARISON TABLES

Hardened Steel and Hard Alloys

C 150 kg	A 60 kg	D 100 kg	15-N 15 kg	30-N 30 kg	45-N 45 kg	Diamond Pyramid	Hard-	Hard-	Stre App	sile ngth rox.
R	CKWE	LL	SU	PERFIC	AL	Hard-	enss	ness	Ör	nly
BRALE	BRALE	BRALE	n Brale	n Brale	n Brale	ness 10 kg	500 g & over	3000 kg	ksi	MPa
65	84.0	74.5	92.0	82.0	72.0	820	846	-	-	-
64	83.5	74.0	-	81.0	71.0	789	822	-	-	-
63	83.0	73.0	91.5	80.0	70.0	763	799	-	-	-
62	82.5	72.5	91.0	79.0	69.0	739	776	-	-	-
61	81.5	71.5	90.5	78.5	67.5	716	754	_	_	_
60	81.0	71.0	90.0	77.5	66.5	695	732	614		2160
59	80.5	70.0	89.5	76.5	65.5	675	710	600		2110
58	80.0	69.0	-	75.5	64.0	655	690	587		2060
57	79.5	68.5	89.0	75.0	63.0	636	670	573	291	2010
56	79.0	67.5	88.5	74.0	62.0	617	650	560	284	1960
55	78.5	67.0	88.0	73.0	61.0	598	630	547	277	1910
54	78.0	66.0	87.5	72.0	59.5	580	612	534	270	1860
53	77.5	65.5	87.0	71.0	58.5	562	594	522	263	1815
52	77.0	64.5	86.5	70.5	57.5	545	576	509		1765
51	76.5	64.0	86.0	69.5	56.0	538	558	496	250	1720
50	76.0	63.0	85.5	68.5	55.0	513	542	484	243	1675
49	75.5	62.0	85.0	67.5	54.0	498	526	472	236	1630
48	74.5	61.5	84.5	66.5	52.5	485	510	460	230	1585
47	74.0	60.5	84.0	66.0	51.5	471	495	448	223	1540
46	73.5	60.0	83.5	65.0	50.0	458	480	437	217	1500
45	73.0	59.0	83.0	64.0	49.0	446	466	426	211	1460
44	72.5	58.5	82.5	63.0	48.0	435	452	415	205	1415
43	72.0	57.5	82.0	62.0	46.5	424	438	404	199	1375
42	71.5	57.0	81.5	61.5	45.5	413	426	393		1335
41	71.0	56.0	81.0	60.5	44.5	403	414	382	188	1295
40	70.5	55.5	80.5	59.5	43.0	393	402	372	182	1255
39	70.0	54.5	80.0	58.5	42.0	383	391	362	177	1220
38	69.5	54.0	79.5	57.5	41.0	373	380	352		1180
37	69.0	53.0	79.0	56.5	39.5	363	370	342	166	1145
36	68.5	52.5	78.5	56.0	38.5	353	360	332	162	1115
35	68.0	51.5	78.0	55.0	37.0	343	351	322	157	1080
34	67.5	50.5	77.0	54.0	36.0	334	342	313	153	1050
33	67.0	50.0	76.5	53.0	35.0	325	334	305	148	1020
32	66.5	49.0	76.0	52.0	33.5	317	326	297	144	990
31	66.0	48.5	75.5	51.5	32.5	309	318	290	140	965
30	65.5	47.5	75.0	50.5	31.5	301	311	283	136	935
29	65.0	47.0	74.5	49.5	30.0	293	304	276	132	910
28	64.5	46.0	74.0	48.5	29.0	285	297	270	129	885
27	64.0	45.5	73.5	47.5	28.0	278	290	265	126	865
26	63.5	44.5	72.5	47.0	26.5	271	284	260	123	850
25	63.0	44.0	72.0	46.0	25.5	264	278	255	120	830
24	62.5	43.0	71.5	45.0	24.0	257	272	250	117	810
23	62.0	42.5	71.0	44.0	23.0	251	266	245	115	795
22	61.5	41.5	70.5	43.0	22.0	246	261	240	112	775
21	61.0	41.0	70.0	42.5	20.5	241	256	235	110	760
20	60.5	40.0	69.5	41.5	19.5	236	251	230	108	745

B 100 kg	•	15-T 15 kg	30-T 30 kg	45-T 45 kg	A 60 kg Rock-	Knoop Hard- ness		nell ness O kg	Stre App	
ROCK			PERFIC		well	500 g	500 kg	3000kg	O	nly
¹ /16" Ball	1/16" Ball	¹ /16" Ball	¹ /16" Ball	¹ /16" Ball	BRALE	& over	10 mm Ball	10 kg	ksi	MPa
100	82.5	93.0	82.0	72.0	61.5	251	201	240	116	790
99	81.0	92.5	81.5	71.0	61.0	246	195	234	112	770
98	79.0	-	81.0	70.0	60.0	241	189	228	109	750
97	77.5	92.0	80.5	69.0	59.5	236	184	222	106	730
96	76.0	-	80.0	68.0	59.0	231	179	216	103	710
95	74.0	91.5	79.0	67.0	58.0	226	175	210	101	695
94	72.5	-	78.5	66.0	57.5	221	171	205	98	675
93	71.0	91.0	78.0	65.5	57.0	216	167	200	96	660
92	69.0	90.5	77.5	64.5	56.5	211	163	195	93	640
91	67.5	-	77.0	63.5	56.0	206	160	190	91	625
90	66.0	90.0	76.0	62.5	55.5	201	157	185	89	615
89	64.0	89.5	75.5	61.5	55.0	196	154	180	87	600
88	62.5	-	75.0	60.5	54.0	192	151	176	85	585
87	61.0	89.0	74.5	59.5	53.5	188	148	172	83	570
86	59.0	88.5	74.0	58.5	53.0	184	145	169	81	560
85	57.5	-	73.5	58.0	52.5	180	142	165	80	550
84	56.0	88.0	73.0	57.0	52.0	176	140	162	78	540
83	54.0	87.5	72.0	56.0	51.0	173	137	159	77	530
82	52.5	-	71.5	55.0	50.5	170	135	156	75	520
81	51.0	87.0	71.0	54.0	50.0	167	133	153	74	510
80	49.0	86.5	70.0	53.0	49.5	164	130	150	72	500
79	47.5	-	69.5	52.0	49.0	161	128	147	71	490
78	46.0	86.0	69.0	51.0	48.5	158	126	144	70	480
77	44.0	85.5	68.0	50.0	48.0	155	124	141	68	470
76	42.5	-	67.5	49.0	47.0	152	122	139	67	460
75	41.0	85.0	67.0	48.5	46.5	150	120	137	66	455
74	39.0	-	66.0	47.5	46.0	147	118	135	-	-
73	37.5	84.5	65.5	46.5	45.5	145	116	132	-	-
72	36.0	84.0	65.0	45.5	45.0	143	114	130	-	-
71	34.5	-	64.0	44.5	44.5	141	112	127	-	-
70	32.5	83.5	63.5	43.5	44.0	139	110	125	-	-
69	31.0	83.0	62.5	42.5	43.5	137	109	123	-	-
68	29.5	-	62.0	41.5	43.0	135	107	121	-	-
67	28.0	82.5	61.5	40.5	42.5	133	106	119	-	-
66	26.5	82.0	60.5	39.5	42.0	131	104	117	-	-
65	25.0	-	60.0	38.5	-	129	102	116	-	-

NOTE: H ardness and S trength C omparison Tables can **only** be approximate. They depend on a number of assumptions, such as metal being homogeneous and having certain hardening characteristics. Therefore, these tables are provided only for comparing different hardness scales with each other and with strength in a general way.

Strength of Materials*

			ULTIMATE	STRENGTH			Viold	Point	MODULUS OF	ELASTICITY
MATERIAL	Ten	sion	Compi	ression	Sh	ear	neiu	PUIII	psix 10 ⁶	Pa x 10 ⁹
	ksi	MPa	ksi	MPa	ksi	MPa	ksi	MPa	(million psi)	(GPa)
G ray C ast Iron (average) C lass 20	22	152	90	620	-	-	-	-	14	96
G ray C ast Iron (good) C lass 30	32	221	115	790	-	-	-	-	16	110
G ray C ast Iron (high-str) C lass 40	43	296	150	1030	-	-	-	-	20	138
Malleable Iron, G rade 32510	55	379	-	-	40	276	36	248	25	172
Malleable Iron, G rade 35018	58	400	-	-	42	290	40	276	25	172
Malleable Iron, G rade 60004	88	606	-	-	62	427	66	455	25	172
W rought Iron	48	331	46	317	40	276	25	172	27	186
Cast Šteel Med. Carbon	70	483	70	483	50	345	38	262	30	207
Steel: Structural A 36	60	413	60	413	45	310	36	248	29	200
1020 cold finished	70	483	70	483	50	345	50	345	29	200
HSLA (Cor-Ten, Tri-Ten, etc.)	80	550	80	550	56	386	55	379	29	200
1035 cold finished	85	586	85	586	63	434	65	448	29	200
4140 cold finished	110	758	110	758	70	483	85	586	29	200
S tressproof	132	910	132	910	79	545	100	690	29	200
Aluminum 30003-0 – annealed	16	110	16	110	11	-	6	-	10	69
Aluminum 5052-0 – annealed	28	193	28	193	18	124	13	90	10.2	70
Aluminum 5052-H 34 hard	38	262	38	262	21	145	31	214	10.2	70
Aluminum 6061-0 – annealed	18	124	18	124	12	83	8	55	10	69
Aluminum 6061-T6 hard	42	290	42	290	27	186	37	255	10	69
B rass, N aval, annealed	57	393	57	393	38	262	25	172	15	103
B ronze, commercial	37	255	37	255	28	193	10	69	17	117

*Typical values; minimum or "guaranteed" values would be at least 10% less.

Soft Steel, Grey and Malleable Cast Iron

EXPANSION TEMPERATURE AND COLOR Expansion of Bodies by Heat

The coefficient of linear expansion (ε) is the change in length, per unit of length, for a change of one degree of temperature. The coefficient of surface expansion is approximately two times the linear coefficient, and the coefficient of volume expansion, for solids, is approximately three times the linear coefficient.

A bar, free to move, will increase in length with an increase in temperature and will decrease in length with a decrease in temperature. The change in length will be εtl , where (ε) is the coefficient of linear expansion, (t) the change in temperature, and (l) the length. If the ends of a bar are fixed, a change in temperature (t) will cause a change in the unit stress of $E\varepsilon t$, and in the total (stress of) $AE\varepsilon t$, where A is the cross-sectional area of the bar and (ε) the modulus of elasticity.

The table below gives coefficients of linear expansion for 10,000,000 degrees (or 10^7 times the value indicated above).

Example: A piece of ferritic malleable iron is exactly 40 inches long at 60° Fahrenheit. Find the length at 90° Fahrenheit, assuming the ends are free to move.

Change of length = $\varepsilon t l = \frac{59 \times 30 \times 40}{10^7} = 0.0007$ inches

The length at 90° Fahrenheit is 40.007 inch.

Example A piece of ferritic malleable is exactly 40 inches long, ends are fixed.

If the temperature increases 30° Fahrenheit, what is the resulting change in unit stress?

Change in unit stress = $E\varepsilon t$ =

 $\frac{29,000,000 \ge 59 \ge 30}{10^7} = 5133 \text{ pounds per square inch}$

Substance	Expa	nsion	Substance	Expa	nsion
Substance	per 10 ⁷ °F	per 10 ⁷ °C	Substance	per 10 ⁷ °F	per 10 ^o °C
Aluminum	123-134	221-241	Plastics (acetal, acrylic, nylon, etc.)	445-500	800-900
Brass & Bronzes	90-118	162-212		(may be half	these values
Carbides & Ceramets	25-46	45-83		if glass re	einforced)
Cast Iron (gray & ductile)	56-88	102-122	Polyethylene	900-1200	1600-2200
Chromium	34	61	Porcelain	20	36
Concrete	59-79	106-142	Rubber	428	770
Copper	90-98	162-176	Sandstone	55-61	99-110
Glass (plate, crown, flint, soda lime)	44-50	79-90	Silver	108	194
Glass (ferrosilicate, pyrex)	18	32	Slate	48-58	86-104
Granite	40-47	72-85	Solder	134	241
lce	283	509	Stainless Steel		
Lead & Alloys	157-163	283-293	Ferritic & Martinsitic	52-66	94-119
Limestone	33-50	59-90	Austentic & Cast	83-104	149-187
Magnesium & Alloys	140-180	252-324	Steel, High Carbon & Alloy	73-84	131-151
Malleable Iron, Ferritic	59	106	Steel, Low Carbon	56-67	101-121
Malleable Iron, Pearlitic	75	135	Tin	116	209
Masonry	31-53	56-95	Titanium & Alloys	45-60	81-108
Phenolics	90-180	160-320	Wood	24-36	43-65
Plaster	92	166	Zinc	141	254

HIGH TEMPERATURES JUDGED BY COLOR*

Color	Temperature °F	Color	Temperature °F
Dark blood red, black red	990	Orange, free scaling heat	1650
Dark red, blood red, low red	1050	Light orange	1725
Dark cherry red	1175	Yellow	1825
Nedium cherry red	1250	Light Yellow	1975
Cherry, full red	1375	White	2200
Light cherry, light red	1550		

*This table associating color and temperature of iron or steel is due to W hite and Taylor.

CHAIN AND SPROCKET INDEX

Cł	nain N).	Cat. Page	Chain Pitch	Type of Chain	Sprocket	Ch	ain No).	Cat. Page	Chain Pitch	Type of Chain	Sprock
CHAMP	3		34	3.075	Drive Chain	1030	WD	120		39	6.000	Welded Steel	H120
	4		10	4.000	Elevator and Conveyor	1120	WDH	120		39	6.000	Welded Steel	H120
	6		11	6.000	Elevator and Conveyor	197	CC	123		48	9.000	Cast Steel Drag	H123
	6	SP	11	6.000	Elevator and Conveyor	1131	Н	124		47	4.000	Cast Drag	H124
ROA	40		34	3.075	Drive Chain	1030	С	124	W	54	4.063	Combination	1240
ROA	40	HYPER	34	3.075	Drive Chain	1030	ROA	124		34	4.063	Drive Chain	1240
NH	45		65	1.630	Polymeric	N45	WHX	124		38	4.000	Welded Steel	H124
С	55		54	1.630	Combination	55	WHX	124	HD	38	4.063	Welded Steel	H124
С	56		54	1.630	Combination	56	WSX	124		38	4.000	Welded Steel	H124
RS	60		10	4.040	Elevator and Conveyor	RS60	XHD	124		52	4.060	Combination	XDH12
Н	74		47	2.609	H Mii	78		130	RT	51	4.000	Roof-Top	130
С	77		54	2.308	Combination	67	WHT 1	130/1	38	38	4.000	Welded Steel	130
NH	77		65	2.308	Polymeric	N77	С	131		54	3.075	Combination	103
Н	78		47	2.609	H MII	78	ER	131		14	3.075	Elevator and Conveyor	103
Н	78	RT	51	2.609	Roof-Top	78	S	131		14		Renamed ER131	
NH	78		65	2.609	Polymeric	N78	SBS	131		14	3.075	Elevator and Conveyor	103
NHT	78		65	2.609	Polymeric	N78	AX	132	WS	54	6.050	Combination	132
WH	78		65	2.609	Welded Steel	78	AZ	132	WS	54	6.050	Combination	132
WHT	78		65	2.609	Welded Steel	78	С	132		54	6.050	Combination	132
WR	78		65	2.609	Welded Steel	78	C	132	W1	54	6.050	Combination	132
	81	Х	65	2.609	Elevator and Conveyor	78	C	132		54	6.050	Combination	132
RS	81	X	65	2.609	Elevator and Conveyor	78	WHX	132		38	6.050	Welded Steel	132
	81	ХН	65	2.609	Elevator and Conveyor	78	WSX	132		38	6.050	Welded Steel	132
RS	81	XH	65	2.609	Elevator and Conveyor	78	XHD	132		52	6.050	Combination	XDH1
	81	XHH	65	2.609	Elevator and Conveyor	78		133		54	6.000	Combination	133
RS	81	XHH	65	2.609	Elevator and Conveyor	78	<u> </u>	138	RT	51	4.000	Roof-Top	130
H	82		65	3.075	H MI	103	SBS	150		14	6.050	Elevator and Conveyor	132
NH	82		65	3.075	Polymeric	N82	SBS	150		14	6.050	Elevator and Conveyor	132
WH	82		38	3.075	Welded Steel	103	ER	150	•	14	6.050	Elevator and Conveyor	132
C	102	P	54	4.000	Combination	103	ERA	150		14	6.050	Elevator and Conveyor	132
ER	102		14	4.000	Elevator and Conveyor	102B	SX	150		14	0.050	Renamed ER150	1.32
S	102		14	4.000	,	1020	SXA	150					
SBS			14	4000	Renamed ER102B	1020	-	150		14	C OFO	Renamed ERA150	132
SDS WD	102	D	39	4.000	Elevator and Conveyor	102B H102	WHX SS	150		38 38	6.050 1.506	Welded Steel	152
					Welded Steel							Elevator and Conveyor	
WDH		-	39	5.000	Welded Steel	H102	WHX	155		38	6.050	Welded Steel	132
	102.5		54	4.040	Combination	102.5	WHX	157		38	6.050	Welded Steel	132
	102.5		14	4.040	Elevator and Conveyor	102.5	XHD	157		52	6.050	Combination	XDH1
	102.5		14	1.0.40	Renamed ER102.5	1005	WHX	159		38	6.125	Welded Steel	132
SBS)	14	4.040	Elevator and Conveyor	102.5	SX	175		14	6.050	Elevator and Conveyor	SX17
Н			48	6.000	Cast Drag	H104	SR	183		10	3.000	Elevator and Conveyor	183
WD	104		39	6.000	Welded Steel	H104	С	188		54	2.609	Combination	78
WDH	-		39	6.000	Welded Steel	H104	S	188		14	2.609	Elevator and Conveyor	78
WHX	106		38	6.000	Welded Steel	106	SBS	188		14	2.609	Elevator and Conveyor	78
WHX	106	SHD	38	6.000	Welded Steel	106	SR	188		10	4.000	Elevator and Conveyor	188
WHX		XHD	38	6.050	Welded Steel	106		194		10	4.000	Elevator and Conveyor	194
С	110		54	6.000	Combination	110		196		11	6.000	Elevator and Conveyor	196
	110		14	6.000	Elevator and Conveyor	110	SRC			72	6.000	LF Bushed Chains	196
	110		48	6.000	Cast Drag	H110	SRD	196		72	6.000	SS Bushed Chains	196
	110		14		Renamed ER110			238		34	3.500	Drive Chain	238
SBS	110		14	6.000	Elevator and Conveyor	110	N		WS	70	2.500	Polymeric Double Flex	N25
WD	110		39	6.000	Welded Steel	H110		270		10	2.609	Elevator and Conveyor	270
	110		39	6.000	Welded Steel	110	RS	303		10	3.000	Elevator and Conveyor	303
WHD	110		39	6.000	Welded Steel	H110	Ν	325	WS	68	2.268	Polymeric Double Flex	N32
С			54	4.760	Combination	111	Х	345		35	3.000	Drive Chain	X34
С		W2	54	4.760	Combination	111	Ν	348		59	3.015	Drop Forged	348
	111		14	4.760	Elevator and Conveyor	111	S	348		59	3.031	Drop Forged	348
	111				Renamed ER111		Х	348		59	3.015	Drop Forged	348
	111	SP	14	4.760*	Elevator and Conveyor	111SP	R	362		34	1.654	Drive Chain	62
				7.420*	,		RR	362		10	1.654	Elevator and Conveyor	62
ES	111	SP	14		Renamed ER111SP		R	432		34	1.654	Drive Chain	62
SBS	111		14	4.760	Elevator and Conveyor	111	RR	432		10	1.654	Elevator and Conveyor	62
WHX			38	4.760	Welded Steel	111	S	458		59	4.031	Drop Forged	458
WD	112		39	8.000	Welded Steel	H112	X	458		59	4.031	Drop Forged	458
WDH			39	8.000	Welded Steel	H112		468		59	4.031	Drop Forged	468
WD	113		39	6.000	Welded Steel	H110	S	468		59	4.031	Drop Forged	468
WDH			39	6.000	Welded Steel	H110	WD	480		39	8.000	Welded Steel	H48
WD	116		39	8.000	Welded Steel	H116	WDH	480		39	8.000	Welded Steel	H48
WDH			39	8.000	Welded Steel	H116	R	506		39	2.300	Drive Chain	506
WD	118		39	8.000	Welded Steel	WD118	B	508	Н	39	2.620	Drive Chain	508
WDH			39	8.000	Welded Steel	WD118	R	508	11	39	2.620	Drive Chain	506
	118		39 48	6.000	Cast Steel Drag	119	A	514 520		39	2.500	Drive Chain	514
					•		A			39	4.000		
SIV	120		71	2.500	Double Flex	9250		531		39	4.000	Elevator and Conveyor	531
wo -Pitch													

CHAIN AND SPROCKET INDEX

CHAIN AND SPROCKET INDEX

Chain No.	Cat. Page	Chain Pitch	Type of Chain	Sprocket	Chain No.	Cat. Page	Chain Pitch	Type of Chain	Sprocket
RR 542	39	6.000	Elevator and Conveyor	110	ER 956	14	6.000	Heavy Duty Elevator	856
B 578	39	2.609	Drive Chain	78	ER 958	14	6.000	Heavy Duty Elevator	958
RO 578	39	2.609	Drive Chain	78	RS 960	11	6.000	Elevator and Conveyor	2124
WDH 580 R 588	39 34	8.000	Welded Steel Drive Chain	H480 78	977 ER 984	49	2.308 7.000	Pintle Heavy Duty Elevator	67 984
RR 588	10	2.609	Elevator and Conveyor	78	988	49	2.609	Pintle	78
SMGL 618	55	6.000	Combination	SMGL618	RS 996	11	6.000	Elevator and Conveyor	2124
ROA 620	34	1.654	Drive Chain	62	998	59	9.031	Drop Forged	998
SM 621	55	9.000	Combination	SM621	S 998	59	9.031	Drop Forged	998
SM 622	55	6.000	Combination	SM622	1030	34	3.075	Drive Chain	1030
RO 622	34	1.654	Drive Chain	62	ROA 1031	34	3.075	Drive Chain	1030
RS 625	10	1.654	Elevator and Conveyor	62	ROA 1032	34	3.075	Drive Chain	1030
RS 627	10	1.654	Elevator and Conveyor	62	R 1033	34	3.075	Drive Chain	1030 1030
SMGL 628 RO 635	55 34	6.000 4.500	Combination Drive Chain	SMGL628 635	R 1035 1036	11	3.075 6.000	Drive Chain	1030
RO 655 RS 658	11	6.000	Elevator and Conveyor	1604	R 1037	34	3.075	Elevator and Conveyor Drive Chain	1030
S 678	59	6.031	Drop Forged	678	1039	12	9.000	Elevator and Conveyor	1039
X 678	59	6.031	Drop Forged	678	SS 1088	10	2.609	Elevator and Conveyor	78
WDH 680	39	8.000	Welded Steel	H480	RS 1113	10	4.040	Elevator and Conveyor	1113
698	59	6.031	Drop Forged	698	RS 1114	11	6.000	Elevator and Conveyor	196
S 698	59	6.031	Drop Forged	698	SR 1114	11	6.000	Elevator and Conveyor	196
S 698 HD	59	6.031	Drop Forged	698	RS 1116	11	6.000	Elevator and Conveyor	196
720 S	49	6.000	Pintle	720S	RR 1120	10	4.000	Elevator and Conveyor	1120
C 720 CS 720 S	49	6.000	Pintle	720S	RS 1131	11	6.000	Elevator and Conveyor	1131
WH 720 CS	49 38	6.000	Pintle	CS720S CS720S	A 1204 RO 1205	34	5.000	Drive Chain	1204 1207
A 730	49	6.000	Welded Steel Pintle	A730	RU 1205 RX 1207	34	5.000 5.000	Drive Chain Drive Chain	1207
CS 730	49	6.000	Pintle	CS730	E 1211	13	12000	Elevator and Conveyor	E1211
RO 770	34	2.300	Drive Chain	506	RS 1211	13	12000	Elevator and Conveyor	E1211
R 778	34	2.609	Drive Chain	78	ER 1222	13	12000	Elevator and Conveyor	E1222
RR 778	10	2.609	Elevator and Conveyor	78	FR 1222	13	12000	Elevator and Conveyor	F1222
WH 784	38	4.000	Welded Steel	130	SJLR 1037	35	3.075	Drive Chain	1030
S 823	14	4.000	Elevator and Conveyor	823	SS 1222	13	12000	Elevator and Conveyor	F1222
SR 825	14	4.000	Elevator and Conveyor	825	SS 1227	13	12000	Elevator and Conveyor	E1222
SR 830	14	6.000	Elevator and Conveyor	830	SS 1232	13	12000	Elevator and Conveyor	F1232
ER 833 ES 833	14	6.000	Elevator and Conveyor Renamed ER833	833	ER 1233 FR 1233	13	12000 12000	Elevator and Conveyor Elevator and Conveyor	E1233 F1233
SBS 844	14	6.000	Elevator and Conveyor	844	SS 1233	13	12000	Elevator and Conveyor	F1233
SR 844	14	6.000	Elevator and Conveyor	844	A 1236	34	4.063	Drive Chain	A1236
RO 850	14	6.000		R0850	1240	34	4.063	Drive Chain	1240
SBS 850 +	14	6.000	Elevator and Conveyor	R0850	ROA 1242	34	4.063	Drive Chain	1240
SBO 850 +	14	6.000	Elevator and Conveyor	R0850	1244	34	4.063	Drive Chain	1240
ER 856	14	6.000	Elevator and Conveyor	856	ER 1244	34	12000	Elevator and Conveyor	E1244
RS 856	14	0.000	Renamed ER856	050	FR 1244	34	12000	Elevator and Conveyor	F1244
SBX 856	14	6.000		856 856	RX 1245 R 1248	34	4.073 4.063	Drive Chain	1240 1240
ER 857 ER 859	14	6.000	Heavy Duty Elevator Heavy Duty Elevator	859	SJLR 1245	35	4.063	Drive Chain Drive Chain	1240
ER 864	14	7.000	Heavy Duty Elevator	864	R 1251	13	12000	Elevator and Conveyor	2397
ROA 881	34	2.609		78	C 1288	10	2.609	Elevator and Conveyor	78
ROA 882	34	2.609		78	1 301	34	5.750	Drive Chain	1301
RS 886	10	2.609	Elevator and Conveyor	78	RO 1306	34	6.000	Drive Chain	1306
SX 886	14	7.000	Heavy Duty Elevator	SX886	ROS 1306	34	6.000	Drive Chain	1306
RS 887	10	2.609	Elevator and Conveyor	78	X 1307	34	7.000	Drive Chain	1307
901 902	50 50	3.149 2.970	Pintle Pintle	901 902	A 1309	35 34	7.000 6.500	Drive Chain Drive Chain	A1309 X1311
902	50	3.170		902	X 1311 RO 1315	34	5.000	Drive Chain	R01315
ER 911	12	9.000		E911	AX 1338	34	3.625	Drive Chain	AX1338
RS 911	12	9.000	Elevator and Conveyor	E911	X 1343	34	4.090	Drive Chain	X1343
ER 922	12	9.000	Elevator and Conveyor	E922	X 1345	34	4.090	Drive Chain	X1345
FR 922	12	9.000	Elevator and Conveyor	F922	X 1351	34	4.125	Drive Chain	X1351
SS 922	12	9.000	Elevator and Conveyor	F922	X 1353	35	4.090	Drive Chain	X1353
SS 927	12	9.000		E922	RO 1355	34	5.000	Drive Chain	R01355
SS 928	12	9.000	Elevator and Conveyor	SS928	RO 1356	34	5.500	Drive Chain	R01356
ER 933 FR 933	12	9.000	Elevator and Conveyor Elevator and Conveyor	E933 F933	X 1365 1535	35	6.000 3.075	Drive Chain Elevator and Conveyor	X1365 1535
SS 933	12	9.000	Elevator and Conveyor	F933	1536	14	3.075	Elevator and Conveyor	1536
SS 942	12	9.000	Elevator and Conveyor	SS942	1539	10	3.075	Elevator and Conveyor	1030
RS 944 +	11	6.000	Elevator and Conveyor	2111	RS 1539	10	3.075	Elevator and Conveyor	1030
945	49	1.630	Pintle	45	AX 1568	34	3.067	Drive Chain	1568
RS 951	11	6.000	Elevator and Conveyor	1131	1578	10	2.609	Elevator and Conveyor	78
C 0F1	11	6.000	Elevator and Conveyor	S951	1604	11	6.000	Elevator and Conveyor	1604
S 951		0.000			4 04 -				107
RS 953 955	11 49	6.000 1.630	Elevator and Conveyor Pintle	953 45	1617 SS 1654	11	6.000 6.000	Elevator and Conveyor Elevator and Conveyor	197 1654

CHAIN AND SPROCKET INDEX

CHAIN AND SPROCKET INDEX

Obsin No. Proj.		hain Na	Cat	Chain	Turne of Chain	Consolvat	C	ain Na	Cat	Chain	Turne of Chain	Consolvat
A 1670 72 6000 UF Burked Chains 2180 ROA 3160 35 2000 Dive Chain ANSI #10 R 1700 13 12000 Eventor and Conveyor 2122 B180 35 2220 Dive Chain ANSI #10 R 1202 13 12000 Eventor and Conveyor F1823 F1833 13 12000 Eventor and Conveyor F1833 F17 2500 UP Chain F1833 F1833 F1833 F133 F1833 F133 F1833 F133 F1833 F133 F17 F1733	L C		Page		Type of Chain	Sprocket	Cr			Pitch	Type of Chain	Sprocket
B 16/0 2 COD SNS 2100 FROA 3160 SNS 2000 Deve Chain 3111 LR 1000 118 12000 liewator and Conveyor 11822 118 12000 liewator and Conveyor 3200 110 4200 liewator and Conveyor 3200 110 4200 liewator and Conveyor 3200 100 4200 Liewator and Conveyor 1133 11113 1113 1113 liewator and Conveyor 1133 liewator and Conveyor 333 liewator and Conveyor 1333 liewator and Conveyor 1333 liewator and Conveyor 333 liewator and Conveyor liewator and Conveyor liewator a					5					2.000	Drive Chain	
R 1205 1 12000 Jewason and Conveyor 2422 R5 3200 33 2220 Dime Chain ANSI #112 FR 1822 13 13000 Feature and Conveyor 1781 12403 3300 3300 331 1301 12403 3301 3400 12403 331 3301 3400 12403 3301 3400 12403 3301 3400 12403 3301 3400 12403 3401 13403 3400 12403 3400 12403 12403 1340 3400 124000 124000 12400												
LR 1822 13 12020 Feb 3205 13 12020 Elevator and Conveyor 3285 F 1833 13 13000 Elevator and Conveyor F1833 R0A 3315 34 4.073 Demo Chan T24 LR 1844 13 13000 Elevator and Conveyor F1833 R0A 3315 34 4.073 Demo Chan F111 SSD 1010 14 2.250 Disc Chan F114 3420 72 4.040 LF Subord Chan F114 ROA 2010 14 2.250 Disc Chan F114 X 3.33 T1750 Downlie Flox 3.438 SSD 2010 Elevator and Conveyor 2.047 X 3.435 T1 7.500 Downlie Flox 3.498 SSD 2113 10 6.000 Elevator and Conveyor T13 ROA 3618 3.4500 Dwine Flox 3.300 R 2121 11 6.000 Elevator and Conveyor T13 ROA 2010 69 1.000 Elevator and Conveyor T10 A000							ROA		_			
IFR 1822 13 18C02 Field 13 13 1240 13 13 13 1240 13 13 1240 13 1240							DC					
F 1833 R1000 Lemmar and Conveyor F1833 R0A 3315 24 4073 Dome Chain 1240 SFS 1772 14 3005 Eventor and Conveyor 1536 A 3420 72 4040 Eventor and Conveyor 113 SS 2004 10 2005 Eventor and Conveyor 1536 A 3420 72 4040 SS Eventor and Conveyor 3433 SS 2004 12 2000 Eventor and Conveyor 2044 3400 71 2000 Double Five 3433 SSO 2113 10 4000 Eventor and Conveyor 2124 WHX 3500 Double Five 340 4500 Eventor and Conveyor 4001 2000 Eventor and Conveyor 4001 4500 Eventor and Conveyor 4001 4500 Eventor and Conveyor 4001 4500 E					3		RS		-			
FR 1844 13 18000 Elevatur and Conveyor F1844 3420 10 4040 Elevatur and Conveyor 1113 SS 2004 10 2008 Elevatur and Conveyor 270 8 3420 72 4040 SE Bushed Chaims 1113 RD 2010 34 2200 Dive Chain 514 X 3433 10 4000 Elevatur and Conveyor 3438 SD 2014 11 6000 Elevatur and Conveyor 2017 3498 71 1757 Duulie Fiex 3438 SB 2014 11 6000 Elevatur and Conveyor 2111 R0A 3818 344 4500 Dive levatur and Conveyor 2124 X 4004 12 3000 Elevatur and Conveyor 1244 X 4004 12 3000 Elevatur and Conveyor 132 R 4007 68 4000 Featur and Conveyor 132 R 4007 68 4000 Featur and Conveyor 142 14 4000 Featur and Conveyor 1400 Featur and Conveyor 132 Featur and Conveyo							DOA		-		5	
SSS 1972 14 3075 Elevator and Conveyor 1536 A 3420 72 4040 SE Bunhed Chaims 11113 R0A 2010 94 2500 Elevator and Conveyor 2010 83 3433 10 4000 Elsenbard and Conveyor 3433 RS 2011 14 2000 Elevator and Conveyor 2044 71 7507 Double Flex 3433 RS 2011 14 2000 Elevator and Conveyor 2131 R0A 3018 34 4000 Double Flex 3500 RD 2113 10 4000 Elevator and Conveyor 2124 WHX 3655 38 6050 Elevator and Conveyor 2124 WHX 3655 38 6050 Elevator and Conveyor 1135 R 4004 68 1000 Elevator and Conveyor 1248 WHX 3655 38 6050 Elevator and Conveyor 1248 4010 68 10000 Elevator and Conveyor 4004 68 12000 Elevator and Conveyor 4001 1248 4013 10 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>RUA</td><td></td><td>-</td><td></td><td></td><td></td></td<>							RUA		-			
SS 2004 10 2.600 Eleventar and Conveyor 270 B 3420 72 4.040 SE abulat Chaims 1113 RS 2047 11 6.000 Eleventar and Conveyor 2477 3498 71 1.750 Duuble Flox 3498 SE0 2106 14 3.075 Eleventar and Conveyor 2113 RO 3500 71 2.500 Duuble Flox 3300 RO 2113 10 4.000 Eleventar and Conveyor 2113 ROA 3518 44 4.000 Eleventar and Conveyor 2124 Wilk 305 38 6000 Eleventar and Conveyor 1173 ROA 3518 44 4000 Eleventar and Conveyor 4101 4000 Eleventar and Conveyor 2124 Wilk 300 4000 Eleventar and Conveyor 4101 4000 Eleventar and Conveyor 4116 4000							Δ		-			
RAD 2010 94 2.500 Environment 514 X 3433 10 4.000 Environment 3433 RS 2014 11 6000 Environment 2064 71 3486 71 7500 Double Firex 3438 SE0 2100 11 6000 Elevisor and Conveyor 2014 3500 71 2500 Double Firex 3433 RD 2113 10 6000 Elevisor and Conveyor 714 WH 310 3500 71 2500 Double Firex 3433 A 2124 11 6000 Elevisor and Conveyor 714 WH 310 3000 Elevisor and Conveyor 714 4000 Red to the tother and Conveyor 714 4000 Red tother and Conveyor 714 4000 Red tother and Conveyor 714 4000 Red tother and Conveyor 7100 2100 Elevisor and Conveyor 7114 714 4000 Red tother and Conveyor 7114 7114 60 1									_			
IBS 2047 11 6000 Elevator and Conveyor 2047 3498 71 17.500 Double Flex 3498 SB0 2103 14 3075 Elevator and Conveyor 103 3500 71 2500 Double Flex 3500 RD 2113 10 4000 Elevator and Conveyor 2114 WIN 3507 Double Flex 3500 RD 2114 11 6000 Elevator and Conveyor 2124 WIN 3555 R 6000 Elevator and Conveyor 4001 69 9000 Elevator and Conveyor 4001 SES 2183 11 6000 Elevator and Conveyor 2124 R 4011 69 12000 Elevator and Conveyor 4011 2183 11 6000 Elevator and Conveyor 1120 4001 4000 Elevator and Conveyor 1120 FX 2184 11 6000 Elevator and Conveyor 1120 1120 1120 1120 1120 1120					5							
IFS 2064 12 9.000 Elewator and Conveyor 2064 2000 22:007 Double Flex 35:00 BR 2111 11 6:000 Elewator and Conveyor 2111 RD 3:00 71 2:007 Double Flex 3:00 R0 2113 10 4:000 Elewator and Conveyor 2111 RDA 3:518 34 4:500 Welded Steel 1:32 C 2124 11 6:000 Elewator and Conveyor 72124 WHX 33:55 R 4:001 6:8 4:000 Elewator and Conveyor 4:011 2126 11 6:000 Elewator and Conveyor R:4:011 6:9 1:000 Elewator and Conveyor 4:011 2183 11 6:000 Elewator and Conveyor 1:8:3 5:4:013 10 4:000 6:000 Elewator and Conveyor 4:011 72:188 10 4:000 Elewator and Conveyor 1:8:3 5:4:013 10 4:000 Elewator and Conveyor 1:8:3 5:4:013 1:0:000 Elewator and Conveyor <t< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td><td></td><td>-</td><td></td><td></td><td></td></t<>			-				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		-			
IBR 2111 11 6000 Elewator and Conveyor 2111 2100 3600 Diver Chain 633 A 2124 11 6000 Elewator and Conveyor 2124 WHX 3855 38 6000 Elewator and Conveyor 7124 WHX 3855 38 6000 Elewator and Conveyor 7135 R 4009 68 9000 Elewator and Conveyor 7404 2125 11 6000 Elewator and Conveyor 7135 R 4009 68 9000 Elewator and Conveyor 7401 2183 11 6000 Elewator and Conveyor 7214 R 4010 68 12000 Elewator and Conveyor 7401 75 2184 11 6000 Elewator and Conveyor 1131 R5 4019 10 4000 Elewator and Conveyor R431 75 2184 11 6000 Elewator and Conveyor 1131 R5 4019 10 4000 Elewator and Conveyor R438 R0 2184 11 6000 Elewator and Conveyor 1137 R5 4313 10 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>2064</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						2064						
BO 2113 10 4.000 Eleventor and Conveyor 2113 ROA 3618 34 4.500 Diver Chain 633 C 2124 111 6.000 Eleventor and Conveyor 2124 X4.4004 12 9.000 Eleventor and Conveyor 74.307 74.30	SBO	2103	14	3.075	Elevator and Conveyor	103		3500	71	2.500*	Double Flex	3500
A 2124 11 6C00 Elevator and Conveyor 2124 WHX 3855 38 6C00 Elevator and Conveyor 136 2126 11 6C00 Elevator and Conveyor 156 RF 4007 69 4C00 Elevator and Conveyor RF 4007 2126 11 6C00 Elevator and Conveyor 123 R 4010 69 1200 Elevator and Conveyor 4010 2180 11 6C00 Elevator and Conveyor 2180 4011 69 1200 Elevator and Conveyor 4011 2183 11 6C00 Elevator and Conveyor 1131 RF 4011 69 1200 Elevator and Conveyor 1120 72184 10 4C00 Elevator and Conveyor 188 RO 4025 12 9100 Elevator and Conveyor 4055 2180 11 6C00 Elevator and Conveyor 173 R5 4055 12 9100 Elevator and Conveyor 4055 2180 11 6C00 Elevator and Conveyor 173 R5 4055 12 9100 Elevator and Conveyor 4056 21	BR	2111		6.000	Elevator and Conveyor							
C C124 11 6000 Elevator and Conveyor 2124 X 4007 69 4000 Flextor and Conveyor 4001 SBS 2162 11 6000 Elevator and Conveyor 1535 R 4000 69 12000 Elevator and Conveyor 4010 2180 11 6000 Elevator and Conveyor 2180 4011 69 12000 Elevator and Conveyor 4011 2183 11 6000 Elevator and Conveyor S951 RS 4013 10 4000 Elevator and Conveyor 1130 RF 4011 69 4200 Elevator and Conveyor 1131 RF 4011 60 Elevator and Conveyor 1133 RF 4011 6000 Elevator and Conveyor 1138 RS 4013 10 4000 Elevator and Conveyor 1138 RF 4027 128 5000 Elevator and Conveyor 1138 RF 4028 12 9000 Elevator and Conveyor 1038 21900 Elevator and Conveyor 1038 21900 Elevator and Conveyor 1038 21900<					,				-			
2126 11 6C00 Elevator and Conveyor 156 RF 4007 69 4000 Refer Conveyor RF 4007 285 2160 11 6C00 Elevator and Conveyor 2124 R 4010 69 1200 Elevator and Conveyor 4010 2180 11 6C00 Elevator and Conveyor 2180 4011 69 1200 Elevator and Conveyor 4011 F2 2183 11 6C00 Elevator and Conveyor 1131 RF 4011 69 1200 Elevator and Conveyor 1120 FX 2184 11 6C00 Elevator and Conveyor 1188 R04 4020 4 5000 Elevator and Conveyor 4055 R0 2184 11 6C00 Elevator and Conveyor 1131 4055 12 9000 Elevator and Conveyor 4055 R1210 400 Elevator and Conveyor 2124 4124 49 4043 Rntec 4124 A118 6000 Elevator and Conveyor 2124 4124												
SBS 2162 14 3075 Elevator and Conveyor 1535 R 4000 69 1200 Flewator and Conveyor 4010 2180 11 6000 Flewator and Conveyor 2180 4011 69 12007 Flewator and Conveyor 4011 2183 11 6000 Elevator and Conveyor S551 R5 4013 10 4000 Elevator and Conveyor 1130 R4 601 1000 Elevator and Conveyor 1120 78 2180 10 4000 Elevator and Conveyor 1131 R4 5043 10 4000 Elevator and Conveyor 1133 R4 5043 10 2000 Elevator and Conveyor 1133 R4 5043 11 6000 Elevator and Conveyor 1137 R4 5065 12 9000 Elevator and Conveyor 137 R5 4013 10 4003 Elevator and Conveyor 138 S4 113 10 4003 Elevator and Conveyor 138 S4 114	C											
A 2178 11 6000 Elevator and Conveyor 2140 R 4010 60 12002 Elevator and Conveyor 4011 2183 11 6000 Elevator and Conveyor 1131 RF 4011 60 12002 Elevator and Conveyor RF 4011 F 2183 11 6000 Elevator and Conveyor 1131 RS 4013 10 4000 Elevator and Conveyor 1132 Z188 10 4000 Elevator and Conveyor 188 RS 4013 10 4000 Elevator and Conveyor 188 RS 4013 12 9000 Elevator and Conveyor 4038 RO 2184 11 6000 Elevator and Conveyor 197 RS 4016 14 4000 Elevator and Conveyor 197 RS 4016 10 4000 Elevator and Conveyor 187 A 2186 11 6000 Elevator and Conveyor 187 87 113 10 4000 Elevator and Conveyor 181 Koto Elevator and Conveyor 1131 RA 4532 10 <td>0.00</td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>, , , , , , , , , , , , , , , , , , ,</td> <td></td>	0.00				,						, , , , , , , , , , , , , , , , , , ,	
2180 11 6000 Elevator and Conveyor 2180 4011 60 4000 Elevator and Conveyor R74011 F 2183 11 6000 Elevator and Conveyor S551 RS 4013 10 4000 Elevator and Conveyor R1201 Z188 10 4000 Elevator and Conveyor 1138 RS 4019 10 4000 Elevator and Conveyor 4003 RS 2188 10 4000 Elevator and Conveyor 188 RS 4015 12 9000 Elevator and Conveyor 4055 RS 2188 11 6000 Elevator and Conveyor 1131 4025 12 9000 Elevator and Conveyor 4055 RS 2190 11 6000 Elevator and Conveyor 1131 RA 216 10 4000 Elevator and Conveyor 1141 WDH 2210 40 6136 Wolted Steel Dag H110 RS 4238 10 4000 Elevator and Conveyor 431 R0 2284 11 6000 Elevator and Conveyor 1131					, j							
2183 11 6000 Elevator and Conveyor 1131 RF 4011 600 Relation and Conveyor RF4011 FX 2184 11 6000 Elevator and Conveyor 1131 RS 4013 10 4000 Elevator and Conveyor 1130 Z185 10 4000 Elevator and Conveyor 1188 ROA 4020 34 5000 Dive Chain 1207 RS 2183 10 4000 Elevator and Conveyor 188 ROA 4020 34 5000 Elevator and Conveyor 4033 RO 2184 11 6000 Elevator and Conveyor 1131 4065 12 9000 Elevator and Conveyor 4065 A 2136 11 6000 Elevator and Conveyor 1131 A 125 10 4000 Elevator and Conveyor 1131 A 4539 10 4000 Elevator and Conveyor 1131 A 4539 10 4000 Elevator and Conveyor 4011 4000 Elevator and Conveyor 1131 A 4539 10 4000 Elevator and Conveyor	A						ĸ					
F 2183 11 6C00 Elevator and Conveyor 1782 178 4013 100 4C00 Elevator and Conveyor 1130 2188 10 4C00 Elevator and Conveyor 1188 ROA 4020 34 5000 Elevator and Conveyor 1188 RO 2184 11 6C00 Elevator and Conveyor 1131 4065 12 9C00 Elevator and Conveyor 4058 RO 2184 11 6C00 Elevator and Conveyor 197 RS 4113 4000 Elevator and Conveyor 188 A 2198 11 6C00 Elevator and Conveyor 127 4124 49 4003 Pinte 4124 WDH 2210 40 6138 Welfed Steel Drag H110 RS 4218 10 4000 Elevator and Conveyor 531 RO 2284 11 6C00 Elevator and Conveyor 133 RA 4328 10 4000 Elevator and Conveyor 4539 RO 2284 11 6C00 Elevator and Conveyor 1306 Drive					5		DF				, , , , , , , , , , , , , , , , , , ,	
FX 2184 11 6CC0 Elevator and Conveyor 1131 RS 4019 10 4CC0 Elevator and Conveyor 1132 RS 2183 10 4CC0 Elevator and Conveyor 1183 SS 4C38 11 12007 Elevator and Conveyor 4C68 RS 2183 10 6CC0 Elevator and Conveyor 1133 4C65 12 9CC0 Elevator and Conveyor 4C68 2190 11 6CC0 Elevator and Conveyor 1131 4C65 10 4CC0 Elevator and Conveyor 1284 WDH 2216 40 6138 Weited Steal Drag H110 RS 4216 10 4CC0 Elevator and Conveyor 1244 WDH 2216 40 6138 Weited Steal Drag H115 RC 4424 34 6CC0 Elevator and Conveyor 433 RO 2284 + 11 6CC0 Elevator and Conveyor 133 RA 4539 13 12CC0 Elevator and Conveyor 4011 WDH 2316 40 8136 Weited Steal Drag RS 4550<	F				4							
2188 10 4000 Elevator and Conveyor 188 ROA 4020 34 5000 Drive Chain 1207 RO 2184 11 6000 Elevator and Conveyor 1131 4065 12 9000 Elevator and Conveyor 4056 RS 2190 11 6000 Elevator and Conveyor 197 RS 4113 10 4000 Elevator and Conveyor 198 A 2198 11 6000 Elevator and Conveyor 2124 4124 40 4000 Elevator and Conveyor 194 WDH 2210 40 6136 Weidee Steel Drag H110 RS 4233 10 3000 Elevator and Conveyor 194 SS 2236 14 4000 Elevator and Conveyor 1131 A 4533 10 3000 Elevator and Conveyor 4539 RO 2284 + 11 6000 Elevator and Conveyor 1131 ROA 4824 34 6000 Drive Chain 1336 R 2405 12 9000 Elevator and Conveyor 237 RS 485					, j						, j	
RS 2188 10 4000 Elevator and Conveyor 1133 4065 12 9000 Elevator and Conveyor 4058 2190 11 6000 Elevator and Conveyor 197 RS 4113 10 4000 Elevator and Conveyor 4058 A 2198 11 6000 Elevator and Conveyor 1274 41124 4043 Elevator and Conveyor 1131 WDH 2210 40 6138 Weided Steel Dreg H110 RS 4228 10 4000 Elevator and Conveyor 1538 RO 2284 11 6000 Elevator and Conveyor 1131 RA 4539 10 3007 Elevator and Conveyor 4038 RO 2244 11 6000 Elevator and Conveyor 1131 RA 4539 10 3007 Elevator and Conveyor 4031 RO 2424 12 8100 Elevator and Conveyor 1131 RA 4539 113 12000 Elevator and Conveyor 4011 WDH 2316 40 8132 Bloco Elev		-							-			
RO 2184 11 6000 Elevator and Conveyor 1131 4065 12 9000 Elevator and Conveyor 197 RS 4065 12 9000 Elevator and Conveyor 197 RS 4113 10 4000 Elevator and Conveyor 197 RS 4113 10 4000 Elevator and Conveyor 124 WDH 2210 40 6136 Wetted Steet Drag H110 RS 4216 10 4000 Elevator and Conveyor 133 RO<2284	RS											
RS 2190 11 6.000 Elevator and Conveyor 197 RS 4113 10 4.003 Elevator and Conveyor 4124 WDH 2210 40 6.136 Welded Steel Drag H110 RS 4216 10 4.003 Elevator and Conveyor 134 RD 2284 11 6.000 Elevator and Conveyor 131 R.4539 10 3075 Elevator and Conveyor 453 RO 2284 + 11 6.000 Elevator and Conveyor 131 R.04539 10 3075 Elevator and Conveyor 4001 WDH 2316 40 8138 Welded Steel Drag H16 R04 4824 34 6.000 Drive Chain 1306 WDH 2304 8131 Welded Steel Drag H480 R5 4851 12 9000 Elevator and Conveyor 4004 R<2475	RO	2184	11					4065	12	9.000		
A 2198 11 GOOD Elevator and Conveyor 2124 4124 49 4033 Pinte 4124 WDH 2210 40 G136 Wolded Steel Drag H110 RS 4328 10 4000 Elevator and Conveyor 4531 RO 2284 11 GCOD Elevator and Conveyor 1131 A 4539 10 3075 Elevator and Conveyor 4539 RO 2284 + 11 GCOD Elevator and Conveyor 1131 RO 48224 34 GCOD Drive Chain 1306 RZ 2320 40 8116 Welded Steel Drag H116 RD 48224 34 GCOD Elevator and Conveyor 4001 RZ 337 13 12000 Elevator and Conveyor 2342 RV 4852 12 9000 Elevator and Conveyor 1901 RA 2405 12 9000 Elevator and Conveyor 2342 WHX 4855 38 12000 Elevator and Conveyor 1903 RS 2600 11 6000 Elevator and Conveyor 2304 WH		2190	11				RS	4065	12			4065
WDH 2210 400 Entational Conveyor 110 RS 4216 10 4000 Elevator and Conveyor 531 RO 2284 11 6000 Elevator and Conveyor 1131 RA 4539 10 3075 Elevator and Conveyor 4533 RO 2284 11 6000 Elevator and Conveyor 1131 RA 4539 10 3075 Elevator and Conveyor 4533 RO 2284 12 9000 Elevator and Conveyor 2342 RA 4851 12 9000 Elevator and Conveyor 4004 R2470 12 9000 Elevator and Conveyor 2397 RS 4851 12 9000 Elevator and Conveyor 4004 R2405 12 9000 Elevator and Conveyor 2397 RS 4851 14 9000 Elevator and Conveyor 1003 RS 2000 Elevator and Conveyor 1003 RS 2000 Elevator and Conveyor 1003 RS 200 Ele	RS	2190	11	6.000	Elevator and Conveyor	197	RS	4113	10	4.000	Elevator and Conveyor	188
SBS 2236 14 4 (2000) Elevator and Conveyor 2236 RS 4328 10 4.0000 Elevator and Conveyor 531 RO 2284 + 11 6000 Elevator and Conveyor 1131 RO 4824 34 6000 Drive Chain 1306 WDH 2316 40 81.26 Welded Steel Drag H116 ROB 4824 34 6000 Drive Chain 1306 RZ 342 12 9000 Elevator and Conveyor 2342 RS 4850 13 12000 Elevator and Conveyor 4004 RZ 337 13 12000 Elevator and Conveyor 2342 RS 4851 12 9000 Elevator and Conveyor 4004 R 2405 12 9000 Elevator and Conveyor 2600 ROA 5035 34 5000 Drive Chain RO1135 R 2614 13 12000 Elevator and Conveyor 2800 WHX 4855 38 11 6000 Elevator and Conveyor 5208 RS 2800 12 8000 Elevator and Conveyor	A	2198		6.000		2124			49	4.043	Pintle	
RO 2284 11 6000 Elevator and Conveyor 1131 RA 4539 10 3075 Elevator and Conveyor 4538 WDH 2316 40 8126 Weled Steel Drag 1116 ROA 4824 34 6000 Drive Chain 1306 R 2342 12 9000 Elevator and Conveyor 2342 RS 4850 13 12000 Elevator and Conveyor 4019 WDH 2380 40 8161 Welded Steel Drag H440 RS 4855 12 9000 Elevator and Conveyor 4009 R 2405 12 9000 Elevator and Conveyor 2347 WHX 4855 38 12000 Elevator and Conveyor 4000 RS 2600 11 6000 Elevator and Conveyor 2800 14 WHX 4512 41 9000 Elevator and Conveyor 2804 RS 2800 12 8000 Elevator and Conveyor 2804 5206			-									
RO 2284 + 11 6:000 Elevator and Conveyor 1131 ROA 4824 34 6:000 Drive Chain 1306 WDH 2316 40 8126 Welded Steel Drag H116 ROB 4824 34 6:000 Drive Chain 1306 R 2342 12 9:000 Elevator and Conveyor 2342 RS 4850 13 12:000 Elevator and Conveyor 4001 R 2405 12 9:000 Elevator and Conveyor 2342 WHX 4855 38 12:000 Elevator and Conveyor 4004 R 2405 12 9:000 Elevator and Conveyor 2342 WHX 4855 38 12:000 Elevator and Conveyor 19:03 RS 2600 11 6:000 Elevator and Conveyor 26:00 ROA 5035 34 5:000 Drive Chain RD135 R 2614 13 12:000 Elevator and Conveyor 28:00 Filevator and Conveyor 28:00 Filevator and Conveyor 5:26 RS 28:00 12 8:000 Elevator and Conveyor 28:					5				_			
WDH 2316 40 8126 Wolded Steel Drag H116 ROB 4824 34 6000 Drive Chain 1306 R 2342 12 9000 Elevator and Conveyor 2342 RS 4850 13 12000 Elevator and Conveyor 4009 R 2307 13 12000 Elevator and Conveyor 2397 RS 4855 12 9000 Elevator and Conveyor 4004 R 2405 12 9000 Elevator and Conveyor 2397 RS 4855 14 9000 Elevator and Conveyor 4004 R 2405 12 9000 Elevator and Conveyor 2300 12 4000 Welted Steel Drag 15135 R S 2800 12 8000 Elevator and Conveyor 2800 5208 11 6000 Elevator and Conveyor 5206 12 16000 Elevator and Conveyor 5208 16 6000 Elevator and Conveyor 5208 16 6000 Elevator and Conv									-		,	
R 2342 12 9000 Elevator and Conveyor 2342 RS 4850 13 12000 Elevator and Conveyor 4009 RR 2397 13 12000 Elevator and Conveyor 2397 RS 4851 12 9000 Elevator and Conveyor 4004 R 2405 12 9000 Elevator and Conveyor 2342 WHX 4855 38 12000 Elevator and Conveyor 4004 RS 2600 11 6000 Elevator and Conveyor 2342 WHX 4855 38 12000 Elevator and Conveyor 1903 RS 2600 11 6000 Elevator and Conveyor 2800 WHX 5157 41 9000 Elevator and Conveyor 5208 111 6000 Elevator and Conveyor 5200 WHX 5157 100 WeIded Steel Drag 5157 RS 2806 12 8000 Elevator and Conveyor 2800 KS 500 Drive Chain 1301									-			
WDH 2380 40 8.161 Welded Steel Drag H480 RS 4851 12 9.000 Elevator and Conveyor 4009 R 2405 12 9.000 Elevator and Conveyor 2397 RS 4855 38 12.000 Elevator and Conveyor 4004 R 2405 12 9.000 Elevator and Conveyor 2342 WHX 4855 38 12.000 Elevator and Conveyor 1903 RS 2600 11 6.000 Elevator and Conveyor 2600 ROA 5037 34 5.000 Drive Chain RO1315 R 2614 13 12.000 Elevator and Conveyor 2800 WHX 5157 41 6.000 Welded Steel Drag 6121 A 2800 12 8.000 Elevator and Conveyor 2800 WHX 5157 41 6.000 Welded Steel Drag 517 RS 2806 12 8.000 Elevator and Conveyor 2806 RO5 542 34 5.500 Drive Chain R033 RA 2323 14 4.000 Elevator and Conveyor 823<									-			
RR 2397 RS 4852 12 9000 Elevator and Conveyor 4004 R 2405 12 9000 Elevator and Conveyor 2342 WHX 4855 38 12000 Welded Steel 4855 ROA 2512 34 3067 Drive Chain 1568 585 4871 14 9000 Elevator and Conveyor 1903 RS 2600 11 6000 Elevator and Conveyor 2600 ROA 5035 34 5000 Drive Chain R01315 R 2614 13 12000 Elevator and Conveyor 2800 WHX 5157 41 6050 Welted Steel Drag 6121 RS 2800 12 8000 Elevator and Conveyor 2804 85 6018 11 6000 Elevator and Conveyor 186 RS 5750 Drive Chain R3 8500 Drive Chain R313 6000 Elevator and Conveyor 6021 44 5.500 Drive Chain 1301												
R 2405 12 9000 Elevator and Conveyor 2342 WHX 4855 38 12000 Welded Steel 4855 ROA 2512 34 3067 Drive Chain 1568 SBS 4871 14 9000 Elevator and Conveyor 1903 R 2600 11 6000 Elevator and Conveyor 2601 ROA 5035 34 5000 Drive Chain RO1315 R 2614 13 12000 Elevator and Conveyor 2800 WHX 5121 41 9000 Welded Steel Drag 6121 A 2800 12 8000 Elevator and Conveyor 2800 5208 11 6000 Elevator and Conveyor 2804 RO 5542 34 5500 Drive Chain 7316 ROA 2814 34 3500 Drive Chain 233 SB0 6065 11 6000 Elevator and Conveyor 6223 RS 2825 38 6060 Welded Steel 132 WHX 6067 41 9000 Welded Steel Drag 6121 WHX 2855												
ROA 2512 34 3067 Drive Chain 1568 SBS 4871 14 9000 Elevator and Conveyor 1903 RS 2600 11 6000 Elevator and Conveyor 2600 ROA 5035 34 5000 Drive Chain RO1315 RS 2614 13 12000 Elevator and Conveyor 2800 WHX 5157 41 6000 Welded Steel Drag 5157 RS 2800 12 8000 Elevator and Conveyor 2800 WHX 5157 41 6000 Elevator and Conveyor 5208 RS 2804 12 8000 Elevator and Conveyor 2806 ROA 5738 34 5.750 Drive Chain 1301 RA 2814 34 3.500 Drive Chain 238 RS 6018 11 6000 Elevator and Conveyor 2866 R 2823 14 4000 Elevator and Conveyor 2848 WHX 6067 41 9000 Welded Steel Drag 6121 WHX 2855 38 6050 Welded Steel Drag 6121 44					5				_			
RS 2600 11 6000 Elevator and Conveyor 2600 ROA 5035 34 5000 Drive Chain R01315 R 2614 13 12000 Elevator and Conveyor 2804 41 9000 Welded Steel Drag 6121 RS 2800 12 8000 Elevator and Conveyor 2800 5208 11 6000 Velded Steel Drag 6121 RS 2804 12 8000 Elevator and Conveyor 2804 RO 5542 34 5.500 Drive Chain RO 301 ROA 2814 34 3.500 Drive Chain 238 RS 6018 11 6.000 Elevator and Conveyor 2804 RO 6542 34 5.500 Drive Chain RO 6211 ROA 2814 34 3.500 Drive Chain 238 RS 6018 11 6.000 Elevator and Conveyor 2648 R 2823 14 4.000 Elevator and Conveyor 2858 <td></td> <td></td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					3							
R 2614 11 9000 Welded Steel Drag 6121 A 2800 12 8000 Elevator and Conveyor 2800 WHX 5157 41 6000 Welded Steel Drag 5157 RS 2800 12 8000 Elevator and Conveyor 2800 5208 11 6000 Elevator and Conveyor 2800 5208 11 6000 Elevator and Conveyor 2806 RAS 5280 34 5500 Drive Chain 1301 ROA 2814 34 3500 Drive Chain 238 RS 6018 11 6000 Elevator and Conveyor 196 R 2823 14 4000 Elevator and Conveyor 823 SB0 6055 14 6000 Elevator and Conveyor 1621 R 2823 14 4000 Elevator and Conveyor 824 WHX 6067 41 9000 Welded Steel Drag 6121 SBX 2857 14 6000 Elevator and Conveyor 856 RO 6214 34 4000 Drive Chain RO6214 2858 8264 14 7000	RS	2600	11	6.000	Elevator and Conveyor				34	5.000		
RS 2800 12 8.000 Elevator and Conveyor 2800 5208 11 6.000 Elevator and Conveyor 5208 RS 2806 12 8.000 Elevator and Conveyor 2804 RO 5542 34 5.500 Drive Chain RO1356 ROA 2814 34 3.500 Drive Chain 238 RS 6018 11 6.000 Elevator and Conveyor 196 R 2823 14 4.000 Elevator and Conveyor 823 SB0 6065 14 6.000 Elevator and Conveyor 6065 C 2848 10 4.000 Elevator and Conveyor 823 SB0 6067 41 9.000 Welded Steel Drag 6121 WHX 2857 14 6.000 Elevator and Conveyor 856 RO 6214 34 4.000 Drive Chain R06214 2858 10 4.000 Elevator and Conveyor 856 6425 R 35 2.500 Drive Chain	R	2614	13	12000	Elevator and Conveyor	2614	WHX	5121	41	9.000	Welded Steel Drag	6121
RS 2804 12 8000 Elevator and Conveyor 2804 RO 5542 34 5500 Drive Chain RO1356 RS 2806 12 8000 Elevator and Conveyor 2808 ROA 5738 34 5750 Drive Chain 1301 ROA 2814 34 3500 Drive Chain 238 RS 6018 11 6000 Elevator and Conveyor 823 SB0 6065 14 6000 Elevator and Conveyor 6065 C 2848 10 4040 Elevator and Conveyor 2848 WHX 6067 41 9000 Welded Steel Drag 6121 WHX 2855 38 6050 Welded Steel 132 WHX 60214 34 4000 Drive Chain RO6214 2858 10 4038 Elevator and Conveyor 856 RO4 Stel 35 2.500 Drive Chain RO6704 13 131 A 2864 10 4.000							WHX					
RS 2806 12 8000 Elevator and Conveyor 2806 ROA 5738 34 5.750 Drive Chain 1301 ROA 2814 34 3500 Drive Chain 238 RS 6018 11 6.000 Elevator and Conveyor 966 C 2848 10 4.000 Elevator and Conveyor 2848 WHX 6067 41 9.000 Welded Steel Drag 6121 WHX 2855 38 6050 Welded Steel 132 WHX 6121 41 9.000 Welded Steel Drag 6121 SBX 2857 14 6000 Elevator and Conveyor 2858 RS 6238 11 6.000 Elevator and Conveyor 2858 RO 6214 34 4.000 Drive Chain 645 SBX 2864 14 7.000 Elevator and Conveyor 859 6425 R 35 2.500 Drive Chain X131 RF 3007 69 3.000 Roll												
ROA 2814 34 3.500 Drive Chain 238 RS 6018 11 6.000 Elevator and Conveyor 196 R 2823 14 4.000 Elevator and Conveyor 823 SB0 6065 14 6000 Elevator and Conveyor 6065 C 2848 10 4040 Elevator and Conveyor 2848 WHX 6067 41 9000 Welded Steel Drag 6121 WHX 2855 38 6020 Welded Steel 132 WHX 6121 41 9000 Welded Steel Drag 6121 SBX 2857 14 6000 Elevator and Conveyor 856 RO 6214 34 4000 Elevator and Conveyor 197 SBX 2859 14 6000 Elevator and Conveyor 859 6425 R 35 2500 Drive Chain R06214 SBX 2864 14 7.000 Elevator and Conveyor 854 RS 6438 11 6000 Elevator and Conveyor 1131 RF 3011 69 3000 Roller Conveyo									_			
R 2823 14 4.000 Elevator and Conveyor 823 SBO 6065 14 6.000 Elevator and Conveyor 6065 C 2848 10 4.040 Elevator and Conveyor 2848 WHX 6067 41 9.000 Welded Steel Drag 6121 WHX 2855 38 6050 Welded Steel 132 WHX 6121 41 9.000 Welded Steel Drag 6121 2857 14 6.000 Elevator and Conveyor 2858 R0 6214 34 4.000 Drive Chain R06214 2858 10 4.083 Elevator and Conveyor 2858 RS 6238 11 6.000 Elevator and Conveyor 197 SBX 2869 14 6.000 Elevator and Conveyor 869 6425 R 35 2.500 Drive Chain K45 R 2868 10 4.000 Elevator and Conveyor 869 6425 R 34 7.000 Drive Chain X1311 R 5007 69 3.000 Roller Conveyor RF307 R0 6706 34 3.075 Drive Chain X1311 R 53013 10									_			
C 2848 10 4.040 Elevator and Conveyor 2848 WHX 6067 41 9.000 Welded Steel Drag 6121 WHX 2855 38 6050 Welded Steel 132 WHX 6121 41 9.000 Welded Steel Drag 6121 SBX 2857 14 6000 Elevator and Conveyor 2856 R0 6214 34 4.000 Drive Chain R06214 2858 10 4.033 Elevator and Conveyor 2858 RS 6238 11 6.000 Elevator and Conveyor 197 SBX 2859 14 6.000 Elevator and Conveyor 859 6425 R 35 2.500 Drive Chain 645 SBX 2864 10 4.000 Elevator and Conveyor 864 RS 6438 11 6.000 Elevator and Conveyor 1311 R 28067 69 3.000 Roller Conveyor RF 3011 6826 14 6.000 Elevator and Conveyor 6826 RS 3013 10 3.000 Brive Chain												
WHX 2855 38 6050 Welded Steel 132 WHX 6121 41 9,000 Welded Steel Drag 6121 SBX 2857 14 6000 Elevator and Conveyor 856 RO 6214 34 4,000 Drive Chain RO 6214 2858 10 4083 Elevator and Conveyor 2858 RS 6238 11 6,000 Elevator and Conveyor 197 SBX 2859 14 6,000 Elevator and Conveyor 859 6425 R 35 2,500 Drive Chain 645 SBX 2864 14 7,000 Elevator and Conveyor 864 RS 6438 11 6,000 Elevator and Conveyor 1131 A 2868 10 4,000 Elevator and Conveyor RF 3007 RO 6706 34 3,075 Drive Chain X1311 RF 3011 69 3,000 Roller Conveyor RF 3011 6826 14 6,000 Elevator and Conveyor 7539 R 3112 34 2,000 Drive Chain 3112 7774					,				_			
SBX 2857 14 6000 Elevator and Conveyor 856 RO 6214 34 4.000 Drive Chain RO 6214 2858 10 4083 Elevator and Conveyor 2858 RS 6238 11 6000 Elevator and Conveyor 197 SBX 2859 14 6000 Elevator and Conveyor 859 6425 R 35 2.500 Drive Chain 645 SBX 2864 14 7.000 Elevator and Conveyor 864 RS 6438 11 6.000 Elevator and Conveyor 1131 A 2868 10 4.000 Elevator and Conveyor 2868 RO 6555 34 7.000 Drive Chain R1311 RF 3011 69 3.000 Roller Conveyor RF 3011 6826 14 6.000 Elevator and Conveyor 6826 RS 3013 10 3.000 Drive Chain X345 7539 10 3.110 Elevator and Conveyor 7539 R 3112 34 2.000 Drive					,						0	
2858 10 4083 Elevator and Conveyor 2858 RS 6238 11 6000 Elevator and Conveyor 859 SBX 2859 14 6000 Elevator and Conveyor 859 6425 R 35 2500 Drive Chain 645 SBX 2864 14 7.000 Elevator and Conveyor 864 RS 6438 11 6000 Elevator and Conveyor 1131 A 2868 10 4.000 Elevator and Conveyor 864 RS 6438 11 6000 Elevator and Conveyor 1131 A 2868 10 4.000 Elevator and Conveyor RF 3007 69 3.000 Roller Conveyor RF 3007 60 555 34 3.075 Drive Chain RO6706 RF 3011 69 3.000 Roller Conveyor RF 3011 6826 14 6.000 Elevator and Conveyor 7539 RS 3013 10 3.000 Drive Chain X345 7539 10 3.110 Elevator and Conveyor 7539 R 3112 34 2.000 Drive Chain 3112 7774 10 2.609												
SBX 2859 14 6.000 Elevator and Conveyor 859 6425 R 35 2.500 Drive Chain 645 SBX 2864 14 7.000 Elevator and Conveyor 864 RS 6438 11 6.000 Elevator and Conveyor 11.31 A 2868 10 4.000 Elevator and Conveyor 2868 RO 6555 34 7.000 Drive Chain X1.311 RF 3007 69 3.000 Roller Conveyor RF.3007 RO 6706 34 3.075 Drive Chain X0.6706 RF 3011 69 3.000 Roller Conveyor RF.3011 6826 14 6.000 Elevator and Conveyor 8632 RS 3013 10 3.000 Elevator and Conveyor 183 RO 7080 35 7.000 Drive Chain A1309 R 3112 34 2.000 Drive Chain X345 7539 10 3.105 Elevator and Conveyor 270 B 3113 34 2.000 Drive Chain 3112 C 9103 49<									_			
SBX 2864 14 7.000 Elevator and Conveyor 864 RS 6438 11 6.000 Elevator and Conveyor 1131 A 2868 10 4.000 Elevator and Conveyor 2868 RO 6555 34 7.000 Drive Chain X1311 RF 3007 69 3.000 Roller Conveyor RF3007 RO 6706 34 3.075 Drive Chain R06706 RF 3011 69 3.000 Roller Conveyor RF3011 6826 14 6.000 Elevator and Conveyor 6826 RS 3013 10 3.000 Elevator and Conveyor 183 RO 7080 35 7.000 Drive Chain A1309 RS 3017 35 3.000 Drive Chain X345 7539 10 3.110 Elevator and Conveyor 7539 R 3112 34 2.000 Drive Chain 3112 7774 10 2.609 Elevator and Conveyor 7539 B 3113 34 2.000 Drive Chain 3112 C 9103 49 3.075 Pintte 103 3120 CM 35 <	SBX								_			
A 2868 10 4,000 Elevator and Conveyor 2868 RO 6555 34 7,000 Drive Chain X1311 RF 3007 69 3,000 Roller Conveyor RF3007 RO 6706 34 3,075 Drive Chain RO 6706 RF 3011 69 3,000 Roller Conveyor RF3011 6826 14 6,000 Elevator and Conveyor 6826 RS 3013 10 3,000 Elevator and Conveyor 183 RO 7080 35 7,000 Drive Chain A1309 RS 3017 35 3,000 Drive Chain X345 7539 10 3,110 Elevator and Conveyor 7539 R 3112 34 2,000 Drive Chain 3112 7774 10 2,609 Elevator and Conveyor 270 B 3113 34 2,000 Drive Chain 3112 C 9103 49 3,075 Pintle 103 3120 CM 35 1,500 Drive Chain ANSI#120 SCA 9103 49 3,075 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>RS</td> <td></td> <td></td> <td></td> <td></td> <td></td>							RS					
RF 3007 69 3.000 Roller Conveyor RF 3007 RO 6706 34 3.075 Drive Chain RO6706 RF 3011 69 3.000 Roller Conveyor RF 3011 6826 14 6.000 Elevator and Conveyor 6826 RS 3013 10 3.000 Elevator and Conveyor 183 RO 7080 35 7.000 Drive Chain A1309 RS 3017 35 3.000 Drive Chain X345 7539 10 3.110 Elevator and Conveyor 7539 R 3112 34 2.000 Drive Chain 3112 7774 10 2.609 Elevator and Conveyor 270 B 3113 34 2.000 Drive Chain 3112 C 9103 49 3.075 Pinte 103 3120 CM 35 1.500 Drive Chain ANSI#120 WH 9103 HD 38 3.075 Welded Steel 103 3125 34 3.125 Drive Chain 3125 9118 59 9.031<					1							
RS 3013 10 3.000 Elevator and Conveyor 183 RO 7080 35 7.000 Drive Chain A1309 RS 3017 35 3.000 Drive Chain X345 7539 10 3.110 Elevator and Conveyor 7539 R 3112 34 2000 Drive Chain 3112 7774 10 2609 Elevator and Conveyor 270 B 3113 34 2000 Drive Chain 3112 7774 10 2609 Elevator and Conveyor 270 B 3113 34 2000 Drive Chain 3112 C 9103 49 3.075 Pinte 103 3120 CM 35 1.500 Drive Chain ANSI#120 WH 9103 HD 38 3.075 Welded Steel 103 3125 34 3.125 Drive Chain 3125 9118 59 9.031 Drop Forged 9118 3125-2 34 3.125 Drive Chain 3125 FX 9184 11 6.000 Elevator and Conveyor <td>RF</td> <td>3007</td> <td></td> <td></td> <td>Roller Conveyor</td> <td></td> <td></td> <td>6706</td> <td></td> <td></td> <td>Drive Chain</td> <td>R06706</td>	RF	3007			Roller Conveyor			6706			Drive Chain	R06706
RS 3017 35 3.000 Drive Chain X345 7539 10 3.110 Elevator and Conveyor 7539 R 3112 34 2000 Drive Chain 3112 7774 10 2609 Elevator and Conveyor 270 B 3113 34 2000 Drive Chain 3112 7774 10 2609 Elevator and Conveyor 270 B 3113 34 2000 Drive Chain 3112 C 9103 49 3075 Pintle 103 3120 CM 35 1.500 Drive Chain ANSI#120 WH 9103 HD 38 3.075 Welded Steel 103 ROA 3120 35 1.500 Drive Chain ANSI#120 SCA 9103 49 3.075 Pintle 103 3125 34 3.125 Drive Chain 3125 9118 59 9.031 Drop Forged 9118 3125-2 34 3.125 Drive Chain 3125 FX 9184 11 6.000 Elevator and Conv	RF	3011	69	3.000	Roller Conveyor					6.000	Elevator and Conveyor	
R 3112 34 2000 Drive Chain 3112 7774 10 2.609 Elevator and Conveyor 270 B 3113 34 2000 Drive Chain 3112 C 9103 49 3.075 Pintle 103 3120 CM 35 1.500 Drive Chain ANSI#120 WH 9103 HD 38 3.075 Welded Steel 103 ROA 3120 35 1.500 Drive Chain ANSI#120 SCA 9103 49 3.075 Pintle 103 3125 34 3.125 Drive Chain AIS15 9118 59 9.031 Drop Forged 9118 3125-2 34 3.125 Drive Chain D31 S 9118 59 9.031 Drop Forged 9118 ROA 3125-HYPER 34 3.125 Drive Chain D31 S 9118 59 9.031 Drop Forged 9184 ROA 3125-2HYPER 34 3.125 Drive Chain D31 9250 71 2.500 Double Flex 9250 SR 3130 11 6.000 Elevator and Conveyor 197 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>RO</td><td></td><td></td><td></td><td></td><td></td></t<>							RO					
B 3113 34 2.000 Drive Chain 3112 C 9103 49 3.075 Pintle 103 3120 CM 35 1.500 Drive Chain ANSI#120 WH 9103 HD 38 3.075 Welded Steel 103 ROA 3120 35 1.500 Drive Chain ANSI#120 SCA 9103 49 3.075 Welded Steel 103 3125 34 3.125 Drive Chain ANSI#120 SCA 9103 49 3.075 Pintle 103 3125-2 34 3.125 Drive Chain 3125 9118 59 9.031 Drop Forged 9118 3125-2 34 3.125 Drive Chain D31 S 9118 59 9.031 Drop Forged 9118 ROA 3125 HYPER 34 3.125 Drive Chain 3125 FX 9184 11 6.000 Elevator and Conveyor 9184 ROA 3125-2HYPER 34 3.125 Drive Chain D31 9250 71 2.500												
3120 CM 35 1.500 Drive Chain ANSI#120 WH 9103 HD 38 3.075 Welded Steel 103 ROA 3120 35 1.500 Drive Chain ANSI#120 SCA 9103 49 3.075 Pintle 103 3125 34 3.125 Drive Chain 3125 9118 59 9.031 Drop Forged 9118 3125-2 34 3.125 Drive Chain D31 S 9118 59 9.031 Drop Forged 9118 ROA 3125 HYPER 34 3.125 Drive Chain D31 S 9118 59 9.031 Drop Forged 9184 ROA 3125-2HYPER 34 3.125 Drive Chain D31 9250 71 2.500 Double Flex 9250 SR 3130 11 6.000 Elevator and Conveyor 197 N 9350 WS 68 3.500 Polymeric Double Flex N9350 3140 CM 35 1.750 Drive Chain ANSI#140 RX 9506 H 34 6.000 Dr							-					
ROA 3120 35 1.500 Drive Chain ANSI#120 SCA 9103 49 3.075 Pintle 103 3125 34 3.125 Drive Chain 3125 9118 59 9.031 Drop Forged 9118 3125-2 34 3.125 Drive Chain D31 S 9118 59 9.031 Drop Forged 9118 ROA 3125 HYPER 34 3.125 Drive Chain D31 S 9118 59 9.031 Drop Forged 9118 ROA 3125 HYPER 34 3.125 Drive Chain D31 S 9118 11 6.000 Elevator and Conveyor 9184 ROA 3125-2HYPER 34 3.125 Drive Chain D31 9250 71 2.500 Double Flex 9250 SR 3130 11 6.000 Elevator and Conveyor 197 N 9350 WS 68 3.500 Polymeric Double Flex N9350 3140 CM 35 1.750 Drive Chain ANSI#140 RX 9506 H 34 6.000	В											
3125 34 3.125 Drive Chain 3125 9118 59 9.031 Drop Forged 9118 3125-2 34 3.125 Drive Chain D31 S 9118 59 9.031 Drop Forged 9118 ROA 3125 HYPER 34 3.125 Drive Chain 3125 FX 9184 11 6.000 Elevator and Conveyor 9184 ROA 3125-2HYPER 34 3.125 Drive Chain D31 9250 71 2.500 Double Flex 9250 SR 3130 11 6.000 Elevator and Conveyor 197 N 9350 WS 68 3.500 Polymeric Double Flex N9350 3140 CM 35 1.750 Drive Chain ANSI #140 RX 9506 H 34 6.000 Drive Chain 1306	DOA											
3125-2 34 3.125 Drive Chain D31 S 9118 59 9.031 Drop Forged 9118 ROA 3125 HYPER 34 3.125 Drive Chain 3125 FX 9184 11 6.000 Elevator and Conveyor 9184 ROA 3125-2HYPER 34 3.125 Drive Chain D31 9250 71 2.500 Double Flex 9250 SR 3130 11 6.000 Elevator and Conveyor 197 N 9350 WS 68 3.500 Polymeric Double Flex N9350 3140 CM 35 1.750 Drive Chain ANSI #140 RX 9506 H 34 6.000 Drive Chain 1306	KUA						SCA					
ROA 3125 HYPER 34 3.125 Drive Chain 3125 FX 9184 11 6.000 Elevator and Conveyor 9184 ROA 3125-2HYPER 34 3.125 Drive Chain D31 9250 71 2.500 Double Flex 9250 SR 3130 11 6.000 Elevator and Conveyor 197 N 9350 WS 68 3.500 Polymeric Double Flex N9350 3140 CM 35 1.750 Drive Chain ANSI #140 RX 9506 H 34 6.000 Drive Chain 1306							S					
ROA 3125-2HYPER 34 3.125 Drive Chain D31 9250 71 2.500 Double Flex 9250 SR 3130 11 6.000 Elevator and Conveyor 197 N 9350 WS 68 3.500 Polymeric Double Flex N9350 3140 CM 35 1.750 Drive Chain ANSI#140 RX 9506 H 34 6.000 Drive Chain 1306			-									
SR 3130 11 6.000 Elevator and Conveyor 197 N 9350 WS 68 3.500 Polymeric Double Flex N9350 3140 CM 35 1.750 Drive Chain ANSI#140 RX 9506 H 34 6.000 Drive Chain 1306												
3140 CM 35 1.750 Drive Chain ANSI#140 RX 9506 H 34 6.000 Drive Chain 1306							N					
					Drive Chain	ANSI#140						
	ROA	3140	35		Drive Chain	ANSI#140	С	9856	11	6.000	Elevator and Conveyor	

CHAIN AND SPROCKET INDEX

*Two-Pitch Chain

SUBJECT INDEX

Α	
Amusement ride applications	5
APPENDIX INFORMATION	_
Chain and sprocket index	148-150
Engineering information	139-147
Subject index	151-152
B	101 102
Bucket flight wings	101
Buckets, elevator	99-102
C	00102
Cast and chill iron sprocket hubs	81-82
CAST CHAINS	01.02
Attachments	56-58
Combination chain	53-55
Drag chain	48-49
MII chain	40-49
Pintle chain	49-51
Roof-top chain	52
Transfer chain	53
Catenary	141-142
Center distance calculation, minimum	140-141
CHAIN ACCESSORIES	
Elevator buckets	99-102
Polymeric buckets	99-100
General information	99
Bucket and flight wings	101
Bucket listing	100
Segmental rim sprockets & traction wheels	90-93
General information	90
Split hub bodies	92
Solid hub bodies	91
Cast rims	93
Sprockets	75-89
Cast sprocket listing	83-88
Fabricated steel sprockets	79-80
Cast sprocket hubs – solid	81
How to order	78
Cast drum flanged traction wheels	89
Selection and specification	76-78
Octagonal tail wheels	80
Sprocket types	75
Fabricated split hubs	79
Sprockets and traction wheels	75
Cast traction wheels	89
Cast sprocket hubs – split	81 79
Fabricated solid hubs Chain breakers	137-138
	74
Chain interchange Chain length, minimum	141
Chain and sprocket index	148-154
Chordal action	140-134
Combination chain	53-55
Corrosion-resistant chains	73

D	
Decimal /fraction /metric conversion table	139
DESIGN AND SELECTION	
Applications beyond scope of catalog selection	129
Chain selection procedures	
Conveyor chain selection	119-129
Polymeric chains	130-132
Elevator chain selection	1328
Drive chain selection	103-118
Heat treatment – see HEAT TREATMENT he	°
Double flex chains, metal	70-71
Double flex chains, polymeric	67-68
DRAG CHAIN	
Center distance	140
Chain length	141
Cast chains	48-49
Welded chains	41
Drive chain selection, Engineered class DRIVE CHAINS	103-118
3100 series – chain listings	35
Drive chain listings	34-35
General information	30-32
Offset sidebar drive chains	34
Sealed joint drive chains	35
Selection procedures – using tables	103-118
Selection tables	110-118
Service factors	108-109
Straight sidebar chains	35
System design considerations	103
Drivemaster	33, 39
DROP FORGED	~~~~~
Attachments	60-63
Chain listings	59
ELEVATOR AND CONVEYOR CHAINS	
	1 = 20
Attachments Cast chains	15-29 47-58
Chains with rollers	10-13
Chains without rollers	10-13
Conveyor selection procedures	119-129
Corrosion-resistant chains	73
Double flex chain sprockets	70
Double flex chains, metal	70-71
Double flex chains, metal Double flex chains, polymeric	67-68
Drop forged chains	59-63
Elevator chain pull calculation	128
Live roller conveyor chains	69
Low friction (LF) bushed chains	72
Polymeric chains	64-68
Welded steel chains	36-46
Elevator buckets	99-102
2.3.2.37 540100	00 TOL

SUBJECT INDEX

SUBJECT INDEX

RIFCT

ENGINEERED STEEL CHAIN Connecting and Disconnecting 133-134 Conveyor and elevator chain 10-29 Design information - see **DESIGN AND SELECTION** Expansion temperature and color 147 Lubrication materials and processes 135-136 Engineering constants 145 G Guide to welding attachments 42 Н Hardness and strength comparison tables 146 HEAT TREATMENT Sprockets 76 Welded steel chain options 36-37 Heavy duty drag chain 41 Hollow pin chain 69 H-type mill, cast 47 65 H-type mill, polymeric **IDLER WHEELS** Cast drum flanged 89 98 Polymeric 74 Interchange - chain Κ Keyways, standard dimensions 140 138 Linkmaster 69 Live roller conveyor chains 72 Low friction (LF) bushed chains Μ MAINTENANCE INFORMATION Assembly /disassembly tools 137-138 Connecting and disconnecting chain 133-134 Conveyor chain maintenance 136 Drive chain maintenance 135 Material characteristics, conveyed materials 143-144 Metric /decimal /fraction conversion table 139 MII chain, cast 47 Ρ 49-51 Pintle chain POLYMERIC CHAINS AND ACCESSORIES Application information 130-132 Catenary sag 131 Double flex chains 67-68 Double-flanged polymeric idlers 98 Environmental factors 130 Maintenance information 132 **Materials** 130 Sprockets and idler wheels 94-98 Sprocket features /benefits 94 Straight running chains 64-65 Straight running – attachments 66 Wear strips 130-131 Power and cycle calculations 141

R	
Roof-top chain	52
S	
S Series drop forged chain	59
Segmental rim sprockets and traction wheels	90-93
Selection procedure	
– see DESIGN AND SELECTION heading	
SPECIAL APPLICATION CHAIN	
Amusement rides	5
Bottling and beverage industry	7
Cane sugar and beet processing	8
Distribution and material handling	9
Draw bench and steel industry chains	6
Food processing	8
Grain handling chain	4
High performance elevator chains	4
High sidebar chain	9
In-floor conveying chain	6
Reclaimer and barge /ship unloading chains	7
Sprocket/chain index	148-150
Sprocket pitch diameters	139
Sprockets, see CHAIN ACCESSORIES	
Sprockets traction wheels, see CHAIN ACCES	SORIES
	SORIES 146
Sprockets traction wheels, see CHAIN ACCES Strength of materials	146
Sprockets traction wheels, see CHAIN ACCESS Strength of materials T Transfer chains	
Sprockets traction wheels, see CHAIN ACCESS Strength of materials T Transfer chains W	146
Sprockets traction wheels, see CHAIN ACCESS Strength of materials T Transfer chains W WELDED STEEL CHAIN	146 52
Sprockets traction wheels, see CHAIN ACCESS Strength of materials T Transfer chains W WELDED STEEL CHAIN Attachments	146 52 43-46
Sprockets traction wheels, see CHAIN ACCESS Strength of materials T Transfer chains W WELDED STEEL CHAIN Attachments Drag chain	146 52 43-46 41
Sprockets traction wheels, see CHAIN ACCESS Strength of materials T Transfer chains W WELDED STEEL CHAIN Attachments Drag chain Drag chain head sprockets	146 52 43-46 41 80
Sprockets traction wheels, see CHAIN ACCESS Strength of materials T Transfer chains W WELDED STEEL CHAIN Attachments Drag chain Drag chain head sprockets Drag chain sprockets	146 52 43-46 41 80 80
Sprockets traction wheels, see CHAIN ACCESS Strength of materials T Transfer chains W WELDED STEEL CHAIN Attachments Drag chain Drag chain head sprockets Drag chain sprockets Drag chain tail sprockets	146 52 43-46 41 80 80 80 80
Sprockets traction wheels, see CHAIN ACCESS Strength of materials T Transfer chains W WELDED STEEL CHAIN Attachments Drag chain Drag chain head sprockets Drag chain sprockets Drag chain tail sprockets General information	146 52 43-46 41 80 80 80 36-37
Sprockets traction wheels, see CHAIN ACCESS Strength of materials T Transfer chains W WELDED STEEL CHAIN Attachments Drag chain Drag chain head sprockets Drag chain sprockets Drag chain tail sprockets General information Heat treatment processes	146 52 43-46 41 80 80 80 36-37 36-37
Sprockets traction wheels, see CHAIN ACCESS Strength of materials T Transfer chains W WELDED STEEL CHAIN Attachments Drag chain Drag chain head sprockets Drag chain sprockets Drag chain sprockets General information Heat treatment processes Heavy duty drag chain	146 52 43-46 41 80 80 80 36-37 36-37 41
Sprockets traction wheels, see CHAIN ACCESS Strength of materials T Transfer chains W WELDED STEEL CHAIN Attachments Drag chain Drag chain head sprockets Drag chain sprockets Drag chain sprockets Drag chain tail sprockets General information Heat treatment processes Heavy duty drag chain Narrow series	146 52 43-46 41 80 80 80 36-37 36-37 41 38
Sprockets traction wheels, see CHAIN ACCESS Strength of materials T Transfer chains W WELDED STEEL CHAIN Attachments Drag chain Drag chain head sprockets Drag chain sprockets Drag chain sprockets Drag chain tail sprockets General information Heat treatment processes Heavy duty drag chain Narrow series Reverse barrell wide mill drag chain	146 52 43-46 41 80 80 80 36-37 36-37 36-37 41 38 40
Sprockets traction wheels, see CHAIN ACCESS Strength of materials T Transfer chains W WELDED STEEL CHAIN Attachments Drag chain Drag chain head sprockets Drag chain sprockets Drag chain tail sprockets General information Heat treatment processes Heavy duty drag chain Narrow series Reverse barrell wide mill drag chain Welding instructions	146 52 43-46 41 80 80 80 36-37 36-37 41 38 40 42
Sprockets traction wheels, see CHAIN ACCESS Strength of materials T Transfer chains W WELDED STEEL CHAIN Attachments Drag chain Drag chain head sprockets Drag chain sprockets Drag chain tail sprockets General information Heat treatment processes Heavy duty drag chain Narrow series Reverse barrell wide mill drag chain Welding instructions Wide series	146 52 43-46 41 80 80 80 36-37 36-37 41 38 40 42 39
Sprockets traction wheels, see CHAIN ACCESS Strength of materials T Transfer chains W WELDED STEEL CHAIN Attachments Drag chain Drag chain head sprockets Drag chain sprockets Drag chain sprockets Drag chain tail sprockets General information Heat treatment processes Heavy duty drag chain Narrow series Reverse barrell wide mill drag chain Welding instructions Wide series Welding instructions, welded and chain	146 52 43-46 41 80 80 80 36-37 36-37 41 38 40 42
Sprockets traction wheels, see CHAIN ACCESS Strength of materials T Transfer chains W WELDED STEEL CHAIN Attachments Drag chain Drag chain head sprockets Drag chain sprockets Drag chain tail sprockets Drag chain tail sprockets General information Heat treatment processes Heavy duty drag chain Narrow series Reverse barrell wide mill drag chain Welding instructions Wide series Welding instructions, welded and chain Weights and conveying characteristics	146 52 43-46 41 80 80 80 36-37 36-37 36-37 41 38 40 42 39 42
Sprockets traction wheels, see CHAIN ACCESS Strength of materials T Transfer chains W WELDED STEEL CHAIN Attachments Drag chain Drag chain head sprockets Drag chain sprockets Drag chain sprockets Drag chain tail sprockets General information Heat treatment processes Heavy duty drag chain Narrow series Reverse barrell wide mill drag chain Welding instructions Wide series Welding instructions, welded and chain	146 52 43-46 41 80 80 80 36-37 36-37 41 38 40 42 39